[Realistic preclinical finite element simulation in knee and hip replacements].

Orthopade

Klinik und Poliklinik für Orthopädie, Physikalische Medizin und Rehabilitation, Klinikum der Universität München, LMU München, Marchioninistr. 15, 81377, München, Deutschland.

Published: December 2020

Background: In the process of developing an implant, computer simulation involving finite element (FE) methods allows the early identification of design-related issues, thus reducing the development process to a minimum. In addition, the FE simulation is used for selecting testing combinations in order to provide the relevant authority with proof of a "worst-case" construct scenario for the subsequent experimental fatigue test.

Results: Research studies with FE simulations show that implant positioning may affect mechanical loads under certain circumstances and, therefore, influence the preclinical evaluation of the prostheses.

Discussion: Although the FE simulation currently contributes significantly to preclinical testing, a standardization of the calculation models allowing comparability of results is lacking. Furthermore, the development of new dynamic and realistic models is necessary in order to identify complex damage modes that currently cannot be reproduced experimentally. When considering everyday clinical life in particular, models that can reproduce intraoperative kinematic changes and the resulting incorrect loads of the implant, as well as address these problems by changing the position or design of the prosthesis, are necessary and would help in future.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00132-020-04025-0DOI Listing

Publication Analysis

Top Keywords

finite element
8
[realistic preclinical
4
preclinical finite
4
simulation
4
element simulation
4
simulation knee
4
knee hip
4
hip replacements]
4
replacements] background
4
background process
4

Similar Publications

Theoretical modeling and modal analysis of multi-element coupled transducers.

J Acoust Soc Am

January 2025

National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China.

Low-frequency transducers are considerably smaller than the wavelength. When multiple low-frequency transducers are closely packed, they couple with the surrounding water and form a transducer-water-transducer coupling structure called multi-element coupled transducers (MCT). This study presents a theoretical model of the MCT based on radiation and mutual radiation theory and analyzes it under multiple resonance frequencies and vibration modes.

View Article and Find Full Text PDF

Objectives: This study evaluated different designs of the conical implant-abutment connection (IAC) and their resistance to microgap formation under oblique loads as specified by the ISO standard for testing dental implants. Also evaluated was the effect of deviations from the ISO specifications on the outcomes.

Methods: Finite element analysis was conducted to compare the microgap formation and stress distribution among three conical IAC designs (A, B, and C) in two loading configurations: one compliant with ISO 14801 and one with a modified load adaptor (non-ISO).

View Article and Find Full Text PDF

Toward a Consistent Framework for Describing the Free Vibration Modes of the Brain.

J Biomech Eng

January 2025

Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA, USA.

Frequency-domain analysis of brain tissue motion has received increased focus in recent years as an approach to describing the response of the brain to impact or vibration sources in the built environment. While researchers in many experimental and numerical studies have sought to identify natural resonant frequencies of the brain, limited description of the associated vibration modes limits comparison of results between studies. We performed a modal analysis to extract the natural frequencies and associated mode shapes of a finite element model of the head.

View Article and Find Full Text PDF

Objectives: This study aims to analyze the biomechanics of three kinds of rigid internal fixation methods for condylar head fractures.

Methods: A three dimensional finite element model of the normal mandible was constructed. It was then used to prepare condylar head fracture finite element model and three kinds of rigid internal fixation finite element model (unilateral tension screw, bilateral tension screw, tension screw+titanium plate).

View Article and Find Full Text PDF

Objectives: The objective of this study is to measuring the morphology and position of bilateral temporomandibular joints in patients with unilateral and bilateral molar scissor bite and simulating the deformation of the mandible during occlusion, in order to provide thesis for the diagnosis of temporomandibular joint disease in patients with unilateral and bilateral molar scissor bite.

Methods: This study was a retrospective study. A total of 10 patients with unilateral molar scissor bite (the unilateral molar scissor bite group) and 10 patients with bilateral molar scissor bite (the bilateral molar scissor bite group) were selected as the experimental group, and 20 adult patients with classⅠ of angle classification of similar ages were selected as the control group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!