A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Patchy Vasoconstriction Versus Inflammation: A Debate in the Pathogenesis of High Altitude Pulmonary Edema. | LitMetric

High altitude pulmonary edema (HAPE) occurs in individuals rapidly ascending at altitudes greater than 2,500 m within one week of arrival. HAPE is characterized by orthopnea, breathlessness at rest, cough, and pink frothy sputum. Several mechanisms to describe the pathophysiology of HAPE have been proposed in different kinds of literature where most of the mechanisms are reported to be activated before a drop in oxygen saturation levels. The majority of the current studies favor diffuse hypoxic pulmonary vasoconstriction (HPV) as a pathophysiological basis for HAPE. However, some of the studies described inflammation in the lungs and genetic basis as the pathophysiology of HAPE. So, there is a major disagreement regarding the exact pathophysiology of HAPE in the current literature, which raises a question as to what is the exact pathophysiology of HAPE. So, we reviewed 23 different articles which include clinical trials, review articles, randomized controlled trials (RCTs), and original research published from 2010 to 2020 to find out widely accepted pathophysiology of HAPE. In our study, we found out sympathetic stimulation, reduced nitric oxide (NO) bioavailability, increased endothelin, increased pulmonary artery systolic pressure (PASP) resulting in diffuse HPV, and reduced reabsorption of interstitial fluid to be the most important determinants for the development of HAPE. Similarly, with the evaluation of the role of inflammatory mediators like C-reactive protein (CRP) and interleukin (IL-6), we found out that inflammation in the lungs seems to modulate but not cause the process of development of HAPE. Genetic basis as evidenced by increased transcription of certain gene products seems to be another promising hypoxic change leading to HAPE. However, comprehensive studies are still needed to decipher the pathophysiology of HAPE in greater detail.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7556690PMC
http://dx.doi.org/10.7759/cureus.10371DOI Listing

Publication Analysis

Top Keywords

pathophysiology hape
24
hape
12
high altitude
8
altitude pulmonary
8
pulmonary edema
8
inflammation lungs
8
genetic basis
8
exact pathophysiology
8
development hape
8
pathophysiology
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!