Development of genetic tools for the thermophilic filamentous fungus .

Biotechnol Biofuels

Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA.

Published: October 2020

Background: Fungal enzymes are vital for industrial biotechnology, including the conversion of plant biomass to biofuels and bio-based chemicals. In recent years, there is increasing interest in using enzymes from thermophilic fungi, which often have higher reaction rates and thermal tolerance compared to currently used fungal enzymes. The thermophilic filamentous fungus produces large amounts of highly thermostable plant cell wall-degrading enzymes. However, no genetic tools have yet been developed for this fungus, which prevents strain engineering efforts. The goal of this study was to develop strain engineering tools such as a transformation system, a CRISPR/Cas9 gene editing system and a sexual crossing protocol to improve the enzyme production.

Results: Here, we report -mediated transformation (ATMT) of using the marker gene, conferring resistance to hygromycin B. The newly developed transformation protocol was optimized and used to integrate an expression cassette of the transcriptional xylanase regulator , which led to up to 500% increased xylanase activity. Furthermore, a CRISPR/Cas9 gene editing system was established in this fungus, and two different gRNAs were tested to delete the orthologue with 10% and 35% deletion efficiency, respectively. Lastly, a sexual crossing protocol was established using a hygromycin B- and a 5-fluoroorotic acid-resistant parent strain. Crossing and isolation of progeny on selective media were completed in a week.

Conclusion: The genetic tools developed for can now be used individually or in combination to further improve thermostable enzyme production by this fungus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547499PMC
http://dx.doi.org/10.1186/s13068-020-01804-xDOI Listing

Publication Analysis

Top Keywords

genetic tools
12
thermophilic filamentous
8
filamentous fungus
8
fungal enzymes
8
enzymes thermophilic
8
tools developed
8
strain engineering
8
crispr/cas9 gene
8
gene editing
8
editing system
8

Similar Publications

Evaluating MicroRNAs as Diagnostic Tools for Lymph Node Metastasis in Breast Cancer: Findings from a Systematic Review and Meta-Analysis.

Crit Rev Oncol Hematol

December 2024

GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and Cancer Interception group, PTS Granada, Avenida de la Ilustración 114, 18016, Granada, Spain; Biomedical Research Institute IBS-Granada. Avda. de Madrid, 15, 18012, Granada, Spain; Unidad de Patología Mamaria. Servicio de Cirugía General y Aparato Digestivo. Hospital Universitario San Cecilio. Granada; Integral Oncology Division, Virgen de las Nieves University Hospital, Av. Dr. Olóriz 16, 18012, Granada, Spain; Molecular lab. Unit of Pathological Anatomy. University Hospital Virgen de las Nieves. 18016. Granada, Spain. Electronic address:

Lymph node metastasis (LNM) significantly affects the prognosis and clinical management of breast cancer (BC) patients. This systematic review and meta-analysis aim to identify microRNAs (miRNAs) associated with LNM in BC and evaluate their potential diagnostic and prognostic value. Following PRISMA guidelines, a comprehensive literature search was conducted in PubMed, Web of Science, and SCOPUS databases, to assess the role of miRNAs in LNM BC.

View Article and Find Full Text PDF

New strategies to advance plant transformation.

Curr Opin Biotechnol

December 2024

HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA; Center for Advanced Bioenergy and Bioproducts Innovation, 1206 W. Gregory Drive (IGB), Urbana, IL 61801, USA. Electronic address:

Plants are an important source of food, energy, and bioproducts. Advances in genetics, genomics-assisted breeding, and biotechnology have facilitated the combining of desirable traits into elite cultivars. To ensure sustainable crop production in the face of climate challenges and population growth, it is essential to develop and implement techniques that increase crop yield and resilience in environments facing water scarcity, nutrient deficiencies, and other abiotic and biotic stressors.

View Article and Find Full Text PDF

Overexpressed AXL kinase is involved in various human malignancies, which incurs tumor progression, poor prognosis, and drug resistance. Suppression of the aberrant AXL axis with genetic tools or small-molecule inhibitors has achieved valid antitumor efficacies in both preclinical studies and clinical antitumor campaigns. Herein we will report the design, synthesis, and structure-activity relationship (SAR) exploration of a series of anilinopyrimidine type II AXL inhibitors.

View Article and Find Full Text PDF

Omics-driven onboarding of the carotenoid producing red yeast Xanthophyllomyces dendrorhous CBS 6938.

Appl Microbiol Biotechnol

December 2024

Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.

Transcriptomics is a powerful approach for functional genomics and systems biology, yet it can also be used for genetic part discovery. Here, we derive constitutive and light-regulated promoters directly from transcriptomics data of the basidiomycete red yeast Xanthophyllomyces dendrorhous CBS 6938 (anamorph Phaffia rhodozyma) and use these promoters with other genetic elements to create a modular synthetic biology parts collection for this organism. X.

View Article and Find Full Text PDF

Osteoarthritis: An integrative overview from pathogenesis to management.

Malays J Pathol

December 2024

Universiti Kebangsaan Malaysia, 43600 Bangi, Faculty of Medicine, Department of Pharmacology, 56000 Cheras, Kuala Lumpur, Malaysia.

Osteoarthritis (OA) is a prevalent degenerative joint disease characterised by cartilage and subchondral bone breakdown, impacting millions worldwide. This review provides an overview of the complex aetiology of OA, integrating biochemical, mechanical, and genetic factors. It also emphasises a multifaceted management approach, combining non-pharmacological, pharmacological, and surgical treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!