AI Article Synopsis

  • Diabetic nephropathy (DN) is a leading cause of kidney failure, and grape seed proanthocyanidin extract (GSPE) shows promise as an antioxidant that could protect kidney health.
  • GSPE was tested in diabetic rats to see if it activates the Nrf2 signaling pathway, which helps manage oxidative stress.
  • Results indicated that GSPE treatment reduced kidney damage, lowered important biomarkers of kidney health, and enhanced the antioxidant capacity in the tissue, suggesting GSPE could be a potential treatment for DN.

Article Abstract

Background: Diabetic nephropathy (DN) is the most common cause of end-stage renal failure. Grape seed proanthocyanidin extract (GSPE) is a powerful antioxidant that is believed to protect the kidney through antioxidant action. However, the underlying mechanism of GSPE protection against DN remains unclear.

Objective: To explore if GSPE can improve DN by activating nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant response element signalling and to clarify its possible mechanism. . Ten healthy Sprague-Dawley rats were randomly selected as controls. Rats with streptozotocin-induced diabetes were randomly divided into three groups (10 animals/group): type 2 diabetes mellitus (T2DM) group (untreated), L-GSPE group (treated with 125-mg/kg/day GSPE for 8 weeks), and H-GSPE group (treated with 250 mg/kg/day GSPE for 8 weeks).

Results: Renal histopathological results indicated limited pathological damage in GSPE-treated groups. Compared with the T2DM group, the H-GSPE group had significantly reduced kidney weight and renal index. Similarly, the levels of fasting blood glucose, serum creatinine, blood urea nitrogen, uric acid, urinary albumin, and renal malondialdehyde ( < 0.05) were also significantly decreased. In addition, GSPE significantly increased the levels of superoxide dismutase, total antioxidative capability, and glutathione ( < 0.05) as well as the protein levels of Nrf2, HO-1, glutathione S-transferase, and NAD (P)H quinone oxidoreductase 1 ( < 0.05).

Conclusion: The results indicate that GSPE reduced renal damage in rats with diabetes by activating the Nrf2 signalling pathway, which consequently increased the antioxidant capacity of the tissue. Therefore, GSPE is a potential natural agent for the treatment of diabetic nephropathy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7542509PMC
http://dx.doi.org/10.1155/2020/5205903DOI Listing

Publication Analysis

Top Keywords

grape seed
8
nrf2 signalling
8
signalling pathway
8
diabetic nephropathy
8
gspe
8
t2dm group
8
group treated
8
h-gspe group
8
renal
5
group
5

Similar Publications

The ternary complex effectively prevents droplet aggregation, Ostwald ripening, and phase separation through its gel network, thereby demonstrating its capability in bioactive compound delivery. In this work, the influence of varying chickpea protein isolate (CPI) levels on the microstructure, gel characteristics, stability and functional properties of grape seed proanthocyanidin (GSP) and konjac gum (KGM) stabilized ternary complexes was investigated. Visual appearance indicated the formation of a non-stratified ternary complex as the CPI enhanced to 3-4 %.

View Article and Find Full Text PDF

Grape Pomace: A Review of Its Bioactive Phenolic Compounds, Health Benefits, and Applications.

Molecules

January 2025

Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal.

The wine industry generates high amounts of waste, posing current environmental and economic sustainability challenges. Grape pomace, mainly composed of seeds, skins, and stalks, contains significant amounts of bioactive compounds and constitutes the main solid residue of this industry. Various strategies are being explored for its valorization, from a circular economy perspective.

View Article and Find Full Text PDF

Thermosensitive Porcine Myocardial Extracellular Matrix Hydrogel Coupled with Proanthocyanidins for Cardiac Tissue Engineering.

Gels

January 2025

Laboratory of Immunotherapy and Tissue Engineering, Department of Cellular and Tissue Biology, Faculty of Medicine, National Autonomous University of Mexico, Av. Universidad 3000, Copilco Universidad, Coyoacán, Ciudad de México 04510, Mexico.

Currently, there are no therapies that prevent the negative myocardial remodeling process that occurs after a heart attack. Injectable hydrogels are a treatment option because they may replace the damaged extracellular matrix and, in addition, can be administered minimally invasively. Reactive oxygen species generated by ischemia-reperfusion damage can limit the therapeutic efficacy of injectable hydrogels.

View Article and Find Full Text PDF

Radiation therapy uses ionizing radiation (IR) to kill cancer cells. However, during radiotherapy normal cells are also damaged and killed by the generation of reactive oxygen species. Polyphenolic compounds are known to mitigate the damaging effects of radiation.

View Article and Find Full Text PDF

Current lifestyles include calorie-dense diets and late-night food intake, which can lead to circadian misalignment. Our group recently demonstrated that sweet treats before bedtime alter the clock system in healthy rats, increasing metabolic risk factors. Therefore, we aimed to assess the impact of the sweet treat consumption time on the clock system in rats fed a cafeteria diet (CAF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!