Purpose: The present study aims to demonstrate the correlation between estrogen-related receptor α (ERRα) and G protein-coupled estrogen receptor (GPER) expression and its predictive role in the prognosis of patients with triple-negative breast cancer (TNBC).
Methods: A retrospective review of 199 cases of TNBC was conducted to assess the GPER and ERRα expression, and its clinicopathologic and prognostic implications. Subsequently, the effects of ERRα and GPER on cell viability, migration, and invasion induced by estrogen were also investigated in vitro.
Results: Compared to TNBCs with ERRα low expression, ERRα-high patients exhibited higher nuclear grade, more frequent lymph nodal metastasis, a higher rate of local recurrence, and distant metastasis. Survival analyses revealed that ERRα-high patients had decreased overall survival (OS), local recurrence-free survival (LRFS), and distant disease-free survival (DDFS) than ERRα-low patients. The GPER expression level positively correlated with ERRα (R=0.167, P=0.18), and TNBCs with ERRα-low/GPER-low demonstrated the best survival outcomes among groups. In vitro, E2 significantly enhanced cell viability, migration, and invasion in BT-549 and MDA-MB-231 cell lines, which was associated with the increased expression of ERRα. Moreover, the overexpression of ERRα induced by estrogen and G1 (GPER agonist) was reversed by knocking down of GPER and blocking the MAPK signaling with PD98059 in both cell lines.
Conclusion: Our findings suggest that ERRα and GPER synergistically predict unfavorable prognosis in TNBCs. Mechanically, GPER mediates the upregulation expression of ERRα induced by estrogen and promotes cell viability, migration, and invasion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7520096 | PMC |
http://dx.doi.org/10.2147/OTT.S265372 | DOI Listing |
iScience
January 2025
Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK.
The implantation of the mouse blastocyst initiates a complex sequence of tissue remodeling and cell differentiation events required for morphogenesis, during which the extraembryonic primitive endoderm transitions into the visceral endoderm. Through single-cell RNA sequencing of embryos at embryonic day 5.0, shortly after implantation, we reveal that this transition is driven by dynamic signaling activities, notably the upregulation of BMP signaling and a transient increase in Sox7 expression.
View Article and Find Full Text PDFChem Sci
January 2025
J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University College Station TX 77843 USA
This perspective work examines the current advancements in integrated CO capture and electrochemical conversion technologies, comparing the emerging methods of (1) electrochemical reactive capture (eRCC) though amine- and (bi)carbonate-mediated processes and (2) direct (flue gas) adsorptive capture and conversion (ACC) with the conventional approach of sequential carbon capture and conversion (SCCC). We initially identified and discussed a range of cell-level technological bottlenecks inherent to eRCC and ACC including, but not limited to, mass transport limitations of reactive species, limitation of dimerization, impurity effects, inadequate generation of CO to sustain industrially relevant current densities, and catalyst instabilities with respect to some eRCC electrolytes, amongst others. We followed this with stepwise perspectives on whether these are considered intrinsic challenges of the technologies - otherwise recommendations were disclosed where appropriate.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
Introduction: Glioma is the most common primary malignant brain tumor. Despite advances in surgical techniques and treatment regimens, the therapeutic effects of glioma remain unsatisfactory. Immunotherapy has brought new hope to glioma patients, but its therapeutic outcomes are limited by the immunosuppressive nature of the tumor microenvironment (TME).
View Article and Find Full Text PDFFront Immunol
January 2025
Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
OX40, a member of the tumor necrosis factor (TNF) receptor superfamily, is expressed on the surface of activated T cells. Upon interaction with its cognate ligand, OX40L, OX40 transmits costimulatory signals to antigen-primed T cells, promoting their activation, differentiation, and survivalprocesses essential for the establishment of adaptive immunity. Although the OX40-OX40L interaction has been extensively studied in the context of disease treatment, developing a substitute for the naturally expressed membrane-bound OX40L, particularly a multimerized OX40L trimers, that effectively regulates OX40-driven T cell responses remains a significant challenge.
View Article and Find Full Text PDFFront Immunol
January 2025
Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, United States.
While durable antibody responses from long-lived plasma cell (LLPC) populations are important for protection against pathogens, LLPC may be harmful if they produce antibodies against self-proteins or self-nuclear antigens as occurs in autoimmune diseases such as systemic lupus erythematosus (SLE). Thus, the elimination of autoreactive LLPC may improve the treatment of antibody-driven autoimmune diseases. However, LLPC remain a challenging therapeutic target.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!