The relationship between severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and host immunity is poorly understood. We performed an extensive analysis of immune responses in 32 patients with severe COVID-19, some of whom succumbed. A control population of healthy subjects was included. Patients with COVID-19 had an altered distribution of peripheral blood lymphocytes, with an increased proportion of mature natural killer (NK) cells and low T-cell numbers. NK cells and CD8 T cells overexpressed T-cell immunoglobulin and mucin domain-3 (TIM-3) and CD69. NK cell exhaustion was attested by increased frequencies of programmed cell death protein 1 (PD-1) positive cells and reduced frequencies of natural killer group 2 member D (NKG2D)-, DNAX accessory molecule-1 (DNAM-1)- and sialic acid-binding Ig-like lectin 7 (Siglec-7)-expressing NK cells, associated with a reduced ability to secrete interferon (IFN)γ. Patients with poor outcome showed a contraction of immature CD56 and an expansion of mature CD57 FcεRIγ adaptive NK cells compared to survivors. Increased serum levels of IL-6 were also more frequently identified in deceased patients compared to survivors. Of note, monocytes secreted abundant quantities of IL-6, IL-8, and IL-1β which persisted at lower levels several weeks after recovery with concomitant normalization of CD69, PD-1 and TIM-3 expression and restoration of CD8 T cell numbers. A hyperactivated/exhausted immune response dominate in severe SARS-CoV-2 infection, probably driven by an uncontrolled secretion of inflammatory cytokines by monocytes. These findings unveil a unique immunological profile in COVID-19 patients that will help to design effective stage-specific treatments for this potentially deadly disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557230PMC
http://dx.doi.org/10.1038/s41423-020-00557-9DOI Listing

Publication Analysis

Top Keywords

unique immunological
8
immunological profile
8
patients covid-19
8
natural killer
8
compared survivors
8
patients
6
cells
6
profile patients
4
covid-19
4
covid-19 relationship
4

Similar Publications

TREM2 is a signaling receptor expressed on microglia that has emerged as an important drug target for Alzheimer's disease and other neurodegenerative diseases. While a number of TREM2 ligands have been identified, little is known regarding the structural details of how they engage. To better understand this, we created a protein library of 28 different TREM2 variants that could be used to map interactions with various ligands using biolayer interferometry.

View Article and Find Full Text PDF

The therapeutic potential of circular RNAs.

Nat Rev Genet

January 2025

Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark.

Over the past decade, research into circular RNA (circRNA) has increased rapidly, and over the past few years, circRNA has emerged as a promising therapeutic platform. The regulatory functions of circRNAs, including their roles in templating protein translation and regulating protein and RNA functions, as well as their unique characteristics, such as increased stability and a favourable immunological profile compared with mRNAs, make them attractive candidates for RNA-based therapies. Here, we describe the properties of circRNAs, their therapeutic potential and technologies for their synthesis.

View Article and Find Full Text PDF

Research on high-molecular-weight polysaccharides tends to be more difficult and lag in terms of their fine structures and bioavailability. We focused on Gastrodia elata Blume polysaccharides (GEPs) with different molecular weights and structural characteristics to reveal their bioactivities, especially those abundant high-molecular-weight GEPs. A novel high-yield polysaccharide (GEP1-2) with the high molecular weight of 3.

View Article and Find Full Text PDF

Response eQTLs, chromatin accessibility, and 3D chromatin structure in chondrocytes provide mechanistic insight into osteoarthritis risk.

Cell Genom

January 2025

Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA. Electronic address:

Osteoarthritis (OA) poses a significant healthcare burden with limited treatment options. While genome-wide association studies (GWASs) have identified over 100 OA-associated loci, translating these findings into therapeutic targets remains challenging. To address this gap, we mapped gene expression, chromatin accessibility, and 3D chromatin structure in primary human articular chondrocytes in both resting and OA-mimicking conditions.

View Article and Find Full Text PDF

A signaling molecule from intratumor bacteria promotes trastuzumab resistance in breast cancer cells.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Molecular Nanostructure and Nanotechnology, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Emerging evidence indicates that intratumor bacteria exist as an active and specific tumor component in many tumor types beyond digestive and respiratory tumors. However, the biological impact and responsible molecules of such local bacteria-tumor direct interaction on cancer therapeutic response remain poorly understood. Trastuzumab is among the most commonly used drugs targeting the receptor tyrosine-protein kinase erbB-2 (ErbB2) in breast cancer, but its resistance is inevitable, severely limiting its clinical effectiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!