Evolution has endowed vertebrates with a divided brain that allows for processing of critical survival behaviours in parallel. Most humans possess a standard functional brain organisation for these ancient sensory-motor behaviours, favouring the right hemisphere for fight-or-flight processes and the left hemisphere for performing structured motor sequences. However, a significant minority of the population possess an organisational phenotype that represents crowding of function in one hemisphere, or a reversal of the standard functional organisation. Using behavioural biases as a proxy for brain organisation, results indicate that reversed brain organisation phenotype increases in populations with autism and is associated with weaker cognitive abilities. Moreover, this study revealed that left-handedness, alone, is not associated with decreased cognitive ability or autism. Rather, left-handedness acts as a marker for decreased cognitive performance when paired with the reversed brain phenotype. The results contribute to comparative research suggesting that modern human abilities are supported by evolutionarily old, lateralised sensory-motor processes. Systematic, longitudinal investigations, capturing genetic measures and brain correlates, are essential to reveal how cognition emerges from these foundational processes. Importantly, strength and direction of biases can act as early markers of brain organisation and cognitive development, leading to promising, novel practices for diagnoses and interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566622PMC
http://dx.doi.org/10.1038/s41598-020-74224-4DOI Listing

Publication Analysis

Top Keywords

brain organisation
16
standard functional
8
reversed brain
8
decreased cognitive
8
brain
7
organisation
5
evolutionary motor
4
motor biases
4
biases cognition
4
cognition children
4

Similar Publications

With recent significant advancements in artificial intelligence, the necessity for more reliable recognition systems has rapidly increased to safeguard individual assets. The use of brain signals for authentication has gained substantial interest within the scientific community over the past decade. Most previous efforts have focused on identifying distinctive information within electroencephalogram (EEG) recordings.

View Article and Find Full Text PDF

(1) Background: Impeded resolution of inflammation contributes substantially to the pathogenesis of Alzheimer's disease (AD); consequently, resolving inflammation is pivotal to the amelioration of AD pathology. This can potentially be achieved by the treatment with specialized pro-resolving lipid mediators (SPMs), which should resolve neuroinflammation in brains. (2) Methods: Here, we report the histological effects of long-term treatment with an SPM, maresin-like 1 (MarL1), on AD pathogenesis in a transgenic 5xFAD mouse model.

View Article and Find Full Text PDF

Unlabelled: Traumatic brain injury (TBI) causes multiple cerebrovascular disruptions and oxidative stress. These pathological mechanisms are often accompanied by serious impairment of cerebral blood flow autoregulation and neuronal and glial degeneration.

Background/objectives: Multiple biochemical cascades are triggered by brain damage, resulting in reactive oxygen species production alongside blood loss and hypoxia.

View Article and Find Full Text PDF

Compromised Sustainable Employability (SE) of medical doctors is a concern for the viability of healthcare and, thus, for society as a whole. This study (preregistration: ISRCTN15232070) will assess the effect of a two-year organizational-level workplace intervention using a Participatory Action Research (PAR) approach on the primary outcome SE (i.e.

View Article and Find Full Text PDF

Is the Relationship Between Cardiovascular Disease and Alzheimer's Disease Genetic? A Scoping Review.

Genes (Basel)

November 2024

Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

Background/objectives: Cardiovascular disease (CVD) and Alzheimer's disease (AD) are two diseases highly prevalent in the aging population and often co-occur. The exact relationship between the two diseases is uncertain, though epidemiological studies have demonstrated that CVDs appear to increase the risk of AD and vice versa. This scoping review aims to examine the current identified overlapping genetics between CVDs and AD at the individual gene level and at the shared pathway level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!