Hydrodynamic interactions play a role in synchronized motions of coupled oscillators in fluids, and understanding the mechanism will facilitate development of applications in fluid mechanics. For example, synchronization phenomenon in two-phase flow will benefit the design of future microfluidic devices, allowing spatiotemporal control of microdroplet generation without additional integration of control elements. In this work, utilizing a characteristic oscillation of adjacent interfaces between two immiscible fluids in a microfluidic platform, we discover that the system can act as a coupled oscillator, notably showing spontaneous in-phase synchronization of droplet breakup. With this observation of in-phase synchronization, the coupled droplet generator exhibits a complete set of modes of coupled oscillators, including out-of-phase synchronization and nonsynchronous modes. We present a theoretical model to elucidate how a negative feedback mechanism, tied to the distance between the interfaces, induces the in-phase synchronization. We also identify the criterion for the transition from in-phase to out-of-phase oscillations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7562928PMC
http://dx.doi.org/10.1038/s41467-020-18930-7DOI Listing

Publication Analysis

Top Keywords

coupled oscillators
12
in-phase synchronization
12
coupled
5
synchronization
5
phase synchronization
4
synchronization fluid-fluid
4
fluid-fluid interfaces
4
interfaces hydrodynamically
4
hydrodynamically coupled
4
oscillators hydrodynamic
4

Similar Publications

This study introduces a five-compartment model to account for the impacts of vaccination-induced recovery and nonlinear treatment rates in settings with limited hospital capacity. To reflect real-world scenarios, the model incorporates multiple reinfections in both vaccinated and recovered groups. It reveals a range of dynamics, including a disease-free equilibrium and up to six endemic equilibria.

View Article and Find Full Text PDF

We examine the impact of the time delay on two coupled massive oscillators within the second-order Kuramoto model, which is relevant to the operations of real-world networks that rely on signal transmission speed constraints. Our analytical and numerical exploration shows that time delay can cause multi-stability within phase-locked solutions, and the stability of these solutions decreases as the inertia increases. In addition to phase-locked solutions, we discovered non-phase-locked solutions that exhibit periodic and chaotic behaviors, depending on the amount of inertia and time delay.

View Article and Find Full Text PDF

Structure of the Se Isomers─An Ab Initio Study.

J Phys Chem A

January 2025

Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.

This study investigates the equilibrium geometries of four different Se isomers using the coupled cluster single and double perturbative (CCSD(T)) method, extrapolating to the complete basis sets. The ground-state geometry of the Se isomer with the C structure (2.8715 Å, 2.

View Article and Find Full Text PDF

The Effects of Resonance Frequency Breathing on Cardiovascular System and Brain-Cardiopulmonary Interactions.

Appl Psychophysiol Biofeedback

January 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China.

Resonance frequency (RF) is characterized as the specific frequency at which a system, equipped with delayed self-correction or negative feedback mechanisms, exhibits maximal amplitude oscillations in response to an external stimulus of a particular frequency. Emerging evidence suggests that the cardiovascular system has an inherent RF, and that breathing at this frequency can markedly enhance health and cardiovascular function. However, the efficacy of resonance frequency breathing (RFB) and the specific responses of the cardiovascular, respiratory, and central nervous systems during RFB remain unclear.

View Article and Find Full Text PDF

Aims: Mutations in the cardiac ryanodine receptor (RyR2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). This study investigates the underlying molecular mechanisms for CPVT mutations within the RyR2 N-terminus domain (NTD).

Methods And Results: We consulted the high-resolution RyR2 structure in both open and closed configuration to identify mutations G357S/R407I and A77T, which lie within the NTD intra- and inter-subunit interface with the Core Solenoid (CSol), respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!