Methylglyoxal (MG) is a highly reactive aldehyde able to form covalent adducts with proteins and nucleic acids, disrupting cellular functions. In this study, we performed a screening of () strains to find out which genes of cells are responsive to MG, emphasizing genes against oxidative stress and DNA repair. Yeast strains were grown in the YPD-Galactose medium containing MG (0.5 to 12 mM). The tolerance to MG was evaluated by determining cellular growth and cell viability. The toxicity of MG was more pronounced in the strains with deletion in genes engaged with DNA repair checkpoint proteins, namely Rad23 and Rad50. MG also impaired the growth and viability of mutant strains Glo1 and Gsh1, both components of the glyoxalase I system. Differently, the strains with deletion in genes encoding for antioxidant enzymes were apparently resistant to MG. In summary, our data indicate that DNA repair and MG detoxification pathways are keys in the control of MG toxicity in
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15376516.2020.1838019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!