Low-Cost Quantitative Photothermal Genetic Detection of Pathogens on a Paper Hybrid Device Using a Thermometer.

Anal Chem

Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States.

Published: November 2020

Tuberculosis (TB), one of the deadliest infectious diseases, is caused by () and remains a public health problem nowadays. Conventional DNA detection methods require sophisticated infrastructure and well-trained personnel, which leads to increasing complexity and high cost for diagnostics and limits their wide accessibility in low-resource settings. To address these issues, we have developed a low-cost photothermal biosensing method for the quantitative genetic detection of pathogens such as DNA on a paper hybrid device using a thermometer. First, DNA capture probes were simply immobilized on paper through a one-step surface modification process. After DNA sandwich hybridization, oligonucleotide-functionalized gold nanoparticles (AuNPs) were introduced on paper and then catalyzed the oxidation reaction of 3,3',5,5'-tetramethylbenzidine (TMB). The produced oxidized TMB, acting as a strong photothermal agent, was used for the photothermal biosensing of DNA under 808 nm laser irradiation. Under optimal conditions, the on-chip quantitative detection of the target DNA was readily achieved using an inexpensive thermometer as a signal recorder. This method does not require any expensive analytical instrumentation but can achieve higher sensitivity and there are no color interference issues, compared to conventional colorimetric methods. The method was further validated by detecting genomic DNA with high specificity. To the best of our knowledge, this is the first photothermal biosensing strategy for quantitative nucleic acid analysis on microfluidics using a thermometer, which brings fresh inspirations on the development of simple, low-cost, and miniaturized photothermal diagnostic platforms for quantitative detection of a variety of diseases at the point of care.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.0c03700DOI Listing

Publication Analysis

Top Keywords

photothermal biosensing
12
genetic detection
8
detection pathogens
8
paper hybrid
8
hybrid device
8
device thermometer
8
quantitative detection
8
dna
7
photothermal
6
detection
5

Similar Publications

Overview of Gas-Generating-Reaction-Based Immunoassays.

Biosensors (Basel)

November 2024

College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.

Point-of-care (POC) immunoassays have become convincing alternatives to traditional immunosensing methods for the sensitive and real-time detection of targets. Immunoassays based on gas-generating reactions were recently developed and have been used in various fields due to their advantages, such as rapid measurement, direct reading, simple operation, and low cost. Enzymes or nanoparticles modified with antibodies can effectively catalyze gas-generating reactions and convert immunorecognition events into gas pressure signals, which can be easily recorded by multifunctional portable devices.

View Article and Find Full Text PDF

Most molecules and dielectric materials have characteristic bond vibrations or phonon modes in the mid-infrared regime. However, infrared absorption spectroscopy lacks the sensitivity for detecting trace analytes due to the low quantum efficiency of infrared sensors. Here, we report mid-infrared photothermal plasmonic scattering (MIP-PS) spectroscopy to push the infrared detection limit toward nearly a hundred molecules in a plasmonic nanocavity.

View Article and Find Full Text PDF

Biomedical prospects and challenges of metal dichalcogenides nanomaterials.

Prog Biomed Eng (Bristol)

August 2024

CSIR-National Physical Laboratory, Dr K.S. Krishnan Road, New Delhi 110012, India.

The biomedical applications of metal dichalcogenides (MDCs) nanomaterials (NMs) are an emerging discipline because of their unique attributes like high surface-to-volume ratio, defect sites, superb catalytic performance, and excitation-dependent emission, which is helpful in bio-imaging and cancer cell killing. Due to the compatibility of sensing material with cells and tissues, MoS, WS, and SnSNMs have piqued the interest of researchers in various biomedical applications like photothermal therapy used in killing cancer cells, drug delivery, photoacoustic tomography (PAT) used in bio-imaging, nucleic acid or gene delivery, tissue engineering, wound healing, etc. Furthermore, these NMs' functionalization and defect engineering can enhance therapeutic efficacy, biocompatibility, high drug transport efficiency, adjustable drug release, dispersibility, and biodegradability.

View Article and Find Full Text PDF

Elucidation of Potential Genotoxicity of MXenes Using a DNA Comet Assay.

ACS Appl Bio Mater

December 2024

Biomedical Research Center, Sumy State University, 31 Sanatorna Street, Sumy 40007, Ukraine.

MXenes are among the most diverse and prominent 2D materials. They are being explored in almost every field of science and technology, including biomedicine. In particular, they are being investigated for photothermal therapy, drug delivery, medical imaging, biosensing, tissue engineering, blood dialysis, and antibacterial coatings.

View Article and Find Full Text PDF

Gold nanoparticles (NPs) are among the most commonly employed metal NPs in biological applications, with distinctive physicochemical features. Their extraordinary optical properties, stemming from strong localized surface plasmon resonance (LSPR), contribute to the development of novel approaches in the areas of bioimaging, biosensing, and cancer research, especially for photothermal and photodynamic therapy. The ease of functionalization with various ligands provides a novel approach to the precise delivery of these molecules to targeted areas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!