A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electro-assisted autohydrogenotrophic reduction of perchlorate and microbial community in a dual-chamber biofilm-electrode reactor. | LitMetric

The electro-assisted autohydrogenotrophic reduction of perchlorate (ClO) was investigated in a dual-chamber biofilm-electrode reactor (BER), in which the microbial community was inoculated from natural sediments. To avoid the effect of extreme pH and direct electron transfer on perchlorate reduction, a novel cathode configuration was designed. The pH of the cathode compartment was successfully controlled in the range of 7.2-8.4 during whole experiment. The effective biological autohydrogenotrophic reduction of perchlorate was achieved using hydrogen generated in-situ on the electrode surface, and the removal rate of 10 mg L perchlorate reached 98.16% at HRT of 48 h. The highest perchlorate removal flux reached to 1498.420 mg m·d with a 0.410 kW·h g-perchlorate energy consumption. The microbial community evolution in the BER was determined by high-throughput sequencing and the results indicated that the Firmicutes and Bacteroidetes were dominant at phylum level when perchlorate concentration was 10 mg L or lower. And the Proteobacteria became ascendant at the perchlorate concentration of 20 mg L. The functional populations for perchlorate reduction were successfully enriched including Nitrosomonas (30%), Thermomonas (9%), Comamonas (8%) and Hydrogenophaga (3%). Meanwhile, the proportion of functional population in biofilm linked to perchlorate concentration. With the increase of influent perchlorate concentration, the perchlorate-reducing bacteria (PRB) were enriched successfully and became ascendant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.128548DOI Listing

Publication Analysis

Top Keywords

perchlorate concentration
16
autohydrogenotrophic reduction
12
reduction perchlorate
12
microbial community
12
perchlorate
11
electro-assisted autohydrogenotrophic
8
dual-chamber biofilm-electrode
8
biofilm-electrode reactor
8
perchlorate reduction
8
reduction
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!