Comprehensive exploration of the ultraviolet degradation of polychlorinated biphenyls in different media.

Sci Total Environ

State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.

Published: February 2021

As one of the most important natural transformation processes, photodegradation deserves more attention and research. In the current work, we comprehensively explored the photochemical behaviors of polychlorinated biphenyls (PCBs) in n-hexane (Hex), methanol/water, and silica gel under UV-irradiation. Photodegradation rates were found to be faster in methanol/water than in Hex. All of the three photochemical systems generated sigmatropic rearrangement products. The dominant photodegradation pathways were dechlorination, dechlorination/methoxylation/hydroxylation, and hydroxylation in Hex, methanol/water, and silica gel systems, respectively. Furthermore, some new photodegradation products, such as polychlorinated biphenyl ethers, polychlorinated dibenzofurans, polychlorinated biphenylenes, and methylated polychlorinated biphenyls, are reported for the first time. These findings would provide deeper insight into the phototransformation behaviors of PCBs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.142590DOI Listing

Publication Analysis

Top Keywords

polychlorinated biphenyls
12
hex methanol/water
8
methanol/water silica
8
silica gel
8
polychlorinated
6
comprehensive exploration
4
exploration ultraviolet
4
ultraviolet degradation
4
degradation polychlorinated
4
biphenyls media
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!