NET-associated citrullinated histones promote LDL aggregation and foam cell formation in vitro.

Exp Cell Res

School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India. Electronic address:

Published: November 2020

Neutrophils have been recently identified in the atherosclerotic lesion and they can release neutrophil extracellular trap (NET) under the pro-inflammatory conditions prevailing in the lesion. Citrullinated histones (Cit-histones) are the major type of citrullinated proteins associated with NET release. Since elevated levels of citrullinated proteins have been detected in inflammatory diseases including atherosclerosis, this study analysed the role played by NET and Cit-histones in different atherogenic events in vitro. First, neutrophil recruitment and NET release in the presence of low-density lipoprotein (LDL) and oxidised LDL (Ox-LDL) were analysed by Boyden's chamber method and microscopy respectively. Then, LDL oxidation and LDL aggregation in the presence of NET and Cit-histones were analysed spectroscopically. Foam cell formation in the presence of NET or Cit-histone was studied by both microscopic and spectroscopic methods. While neutrophil recruitment was facilitated by Ox-LDL and not by LDL, the extent of NET release was significantly increased in the presence of both LDL and Ox-LDL. In the presence of NET, LDL oxidation, aggregation and foam cell formation were found to be increased. Cit-histones were found to accelerate LDL aggregation and foam cell formation at higher citrulline levels. Altogether, the results suggest that both NET and NET-associated Cit-histone released at the lesion can play major roles as pro-atherogenic mediators. Inhibiting the action of NET or Cit-histone would, therefore, be beneficial in slowing down atherosclerotic progression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2020.112320DOI Listing

Publication Analysis

Top Keywords

foam cell
16
cell formation
16
ldl aggregation
12
aggregation foam
12
net release
12
presence net
12
net
10
ldl
9
citrullinated histones
8
citrullinated proteins
8

Similar Publications

Sulcardine sulfate (Sul) is a novel antiarrhythmic agent blocking multiple channels and exhibits unique pharmacological properties such as lower APD-dependent prolongation and reduced arrhythmia risk. Sul is currently in Phase III clinical trials, yet studies on its long-term toxicological profile and potential target organs remain unexplored. This study investigated the related toxicity of Sul in Sprague Dawley (SD) rats through repeated oral administration for 26 weeks, followed by a 4-week recovery period.

View Article and Find Full Text PDF

Selenium-Doped Copper Formate Nanozymes with Antisenescence and Oxidative Stress Reduction for Atherosclerosis Treatment.

Nano Lett

January 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.

Atherosclerosis, resulting from chronic inflammation of the arterial wall, serves as the underlying cause of multiple major cardiovascular diseases. Current anti-inflammatory therapies often exhibit limited and unsatisfactory efficacy. To address this, we have designed a selenium-doped copper formate (Cuf-Se) nanozyme for the treatment of atherosclerosis, which possesses superoxide dismutase (SOD) and glutathione peroxidase (GPx)-like activities.

View Article and Find Full Text PDF

Macrophage-based pathogenesis and theranostics of vulnerable plaques.

Theranostics

January 2025

Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.

Vulnerable plaques, which are high-risk features of atherosclerosis, constitute critical elements in the disease's progression due to their formation and rupture. Macrophages and macrophage-derived foam cells are pivotal in inducing vulnerability within atherosclerotic plaques. Thus, understanding macrophage contributions to vulnerable plaques is essential for advancing the comprehension of atherosclerosis and devising novel therapeutic and diagnostic strategies.

View Article and Find Full Text PDF

Atherosclerosis (AS) is a prevalent inflammatory vascular disease characterized by plaque formation, primarily composed of foam cells laden with lipids. Despite lipid-lowering therapies, effective plaque clearance remains challenging due to the overexpression of the CD47 molecule on apoptotic foam cells, inhibiting macrophage-mediated cellular efferocytosis and plaque resolution. Moreover, AS lesions are often associated with severe inflammation and oxidative stress, exacerbating disease progression.

View Article and Find Full Text PDF

Commercial 3D zinc foam anodes with high deposition space and ion permeation have shown great potential in aqueous ion batteries. However, the local accumulated stress from its high-curvature surface exacerbates the Zn dendrite issue, leading to poor reversibility. Herein, we have employed zincophilic N-doped carbon@Sn composites (N-C@Sn) as nano-fillings to effectively release the local stress of high curvature surface of 3D Zn foams toward dendrite-free anode in aqueous zinc ion battery (AZIB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!