The high-mortality rate of cardiovascular diseases (CVDs) is associated with the myocardial ischemia and reperfusion (I/R). Recent investigations have revealed that microRNAs (miRNAs) exert vital functions in the apoptosis of cardiomyocyte cell. Nevertheless, the potential role of miR-30a-5p in the regulation of cardiomyocyte cell apoptosis needs to be illuminated. In the current study, we observed that hypoxia/reoxygenation (H/R) remarkably raised the level of miR-30a-5p but reduced the expression of E2F transcription factor 3 (E2F3) in H9c2 cardiomyocytes. In vivo, miR-30a-5p was found to be significantly upregulated in the hearts of rats following I/R. Downregulation of miR-30a-5p using anti-miR-30a-5p decreased H9c2 cardiomyocytes apoptosis caused by H/R and promoted the proliferation of H9c2 inhibited by H/R. Moreover, E2F3 was a possible target gene of miR-30a-5p and upregulation of miR-30a-5p reduced the expression level of E2F3 in H9c2 cardiomyocytes. We further identified that E2F3 silencing reversed the effect of anti-miR-30a-5p on the proliferation and apoptosis in H/R treated H9c2 cells. These studies suggested that downregulation of miR-30a-5p attenuated the impact of H/R on H9c2 cardiomyocytes through targeting E2F3.

Download full-text PDF

Source
http://dx.doi.org/10.1002/kjm2.12309DOI Listing

Publication Analysis

Top Keywords

h9c2 cardiomyocytes
16
cardiomyocyte cell
8
mir-30a-5p reduced
8
reduced expression
8
e2f3 h9c2
8
downregulation mir-30a-5p
8
mir-30a-5p
7
h9c2
6
apoptosis
5
h/r
5

Similar Publications

20-HETE mediates Ang II-induced cardiac hypertrophy via ROS and Ca signaling in H9c2 cells.

Sci Rep

January 2025

Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China.

In the vascular system, angiotensin II (Ang II) mediated vasoconstriction by inducing the production of 20-hydroxyeicosatetraenoic acid (20-HETE). However, the role of 20-HETE in Ang II-induced cardiac dysfunction had yet to be fully elucidated. This study investigated the effects of Ang II on CYP4A expression and 20-HETE production in H9c2 cells using RT-qPCR, Western blot, and ELISA.

View Article and Find Full Text PDF

We investigated the protective effect of the NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC) on cardiomyocyte injury induced by HCN1 channel overexpression, and explored the underlying mechanisms. An HCN1 overexpression vector was constructed and transfected into H9C2 cells, followed by PDTC treatment. The experiments comprised the following groups: control, control + PDTC, overexpression negative control, HCN1 overexpression (HCN1-OE), and combined HCN1-OE + PDTC groups.

View Article and Find Full Text PDF

Total glucosides of paeony (TGP) have been investigated for their effects on cardiomyocyte hypertrophy induced by angiotensin II (Ang II). In this study, rat cardiomyocyte H9c2 cells were treated with various doses of TGP (0, 12.5, 25, 50, 100, 200, and 400 μmol/L), and cell viability was assessed using the MTT method to determine an optimal dose.

View Article and Find Full Text PDF

Objectives: To explore the mechanism that mediate the therapeutic effect of quercetin on heart failure.

Methods: We searched the TCMSP and Swiss ADME databases for the therapeutic targets of quercetin and retrieved heart failure targets from the Genecards and OMIM databases. The intersecting targets were analyzed with GO and KEGG pathway analysis using DAVID database, and the key genes were identified PPI analysis.

View Article and Find Full Text PDF

Objectives: To investigate the mechanism through which N-acetylneuraminic acid (Neu5Ac) exacerbates hypoxia/reoxygenation (H/R) injury in rat cardiomyocytes (H9C2 cells).

Methods: H9C2 cells were cultured in hypoxia and glucose deprivation for 8 h followed by reoxygenation for different durations to determine the optimal reoxygenation time. Under the optimal H/R protocol, the cells were treated with 0, 5, 10, 20, 30, 40, 50, and 60 mmol/L Neu5Ac during reoxygenation to explore the optimal drug concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!