The shape of artificial intelligence: Just a black box?

Chem Biol Drug Des

Drug Discovery Group, The Wolfson Institute for Biomedical Research, University College London, London, United Kingdom.

Published: September 2020

Download full-text PDF

Source
http://dx.doi.org/10.1111/cbdd.13793DOI Listing

Publication Analysis

Top Keywords

shape artificial
4
artificial intelligence
4
intelligence black
4
black box?
4
shape
1
intelligence
1
black
1
box?
1

Similar Publications

This white paper examines the potential of pioneering technologies and artificial intelligence (AI)-driven solutions in advancing clinical trials involving radiotherapy. As the field of radiotherapy evolves, the integration of cutting-edge approaches such as radiopharmaceutical dosimetry, FLASH radiotherapy, image-guided radiation therapy (IGRT), and AI promises to improve treatment planning, patient care, and outcomes. Additionally, recent advancements in quantum science, linear energy transfer/relative biological effect (LET/RBE), and the combination of radiotherapy and immunotherapy create new avenues for innovation in clinical trials.

View Article and Find Full Text PDF

The factors shaping human microbiome variation are a major focus of biomedical research. While other fields have used large sequencing compendia to extract insights requiring otherwise impractical sample sizes, the microbiome field has lacked a comparably sized resource for the 16S rRNA gene amplicon sequencing commonly used to quantify microbiome composition. To address this gap, we processed 168,464 publicly available human gut microbiome samples with a uniform pipeline.

View Article and Find Full Text PDF

Artificial intelligence (AI) has been increasingly used in delivering mental healthcare worldwide. Within this context, the traditional role of mental health nurses has been changed and challenged by AI-powered cutting-edge technologies emerging in clinical practice. The aim of this integrative review is to identify and synthesise the evidence of AI-based applications with relevance for, and potential to enhance, mental health nursing practice.

View Article and Find Full Text PDF

A lightweight prosthetic hand with 19-DOF dexterity and human-level functions.

Nat Commun

January 2025

Institute of Humanoid Robots, School of Engineering Science, University of Science and Technology of China, Hefei, 230026, China.

A human hand has 23-degree-of-freedom (DOF) dexterity for managing activities of daily living (ADLs). Current prosthetic hands, primarily driven by motors or pneumatic actuators, fall short in replicating human-level functions, primarily due to limited DOF. Here, we develop a lightweight prosthetic hand that possesses biomimetic 19-DOF dexterity by integrating 38 shape-memory alloy (SMA) actuators to precisely control five fingers and the wrist.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!