As a subseries of the covalent organic framework (COF) material family, polyimide-based covalent organic framework (PI-COF) material, which has the advantages of high stability of polyimide, high specific surface area, and controllable pores of COF material, is expected to be a new type of porous material with potential applications. Although the development of PI-COF is in the early stages during the past decade, it has attracted extensive attention and is widely used in heterogeneous catalysis, gas separation, and storage fields. Therefore, this review is aiming to give a comprehensive understanding of the recent progress of PI-COFs. This article summarizes the progress of PI-COF from three aspects: controllable structure design, synthesis method, and application. First of all, under the guidance of network chemical design principles, the topology type of PI-COF and the size and shape of the formed pores are summarized in terms of different organic monomers. Then the five synthetic strategies for the synthesis of PI-COF are analyzed. Finally, the applications of PI-COF in adsorption and separation, drug delivery, solar-to-electrochemical energy storage, photocatalysis, and electrocatalyst are introduced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.202000402 | DOI Listing |
Acc Chem Res
January 2025
School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.
View Article and Find Full Text PDFNano Lett
January 2025
Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
Covalent-organic frameworks (COFs) are dynamic covalent porous organic materials constructed from emissive molecular organic building blocks. However, most two-dimensional (2D) COFs are nonemissive or weakly emissive in the solid state owing to the intramolecular rotation and vibration together with strong π-π interactions. Herein, we report a pressure strategy to achieve the bright multicolor emission from yellow to red in the 2D triazine triphenyl imine COF (TTI-COF).
View Article and Find Full Text PDFInorg Chem
January 2025
Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, P. R. China.
Promoting the rate of the oxygen reduction reaction (ORR) is critical for boosting the overall energy efficiency of the flexible zinc-air batteries (FZABs). Inspired by nature, we designed "branch-leaf" like hierarchical porous carbon nanofibers with ultralow loadings of Ir nanoparticles (NPs) derived from covalent-organic framework/metal-organic framework (COF/MOF) core-shell hybrids. The as-obtained Ir/FeZn-hierarchical porous carbon nanofibers (HPCNFs) showcase enhanced ORR performance, and the ultralow Ir loading reduces the cost while maintaining catalytic capacity.
View Article and Find Full Text PDFNanoscale
January 2025
Dept. of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA.
Identifying facile strategies for hierarchically structuring crystalline porous materials is critical for realizing diffusion length scales suitable for broad applications. Here, we elucidate synthesis-structure-function relations governing how room temperature catalytic conditions can be exploited to tune covalent organic framework (COF) growth and thereby access unique hierarchical morphologies without the need to introduce secondary templates or structure directing molecules. Specifically, we demonstrate how scandium triflate, an efficient catalyst involved in the synthesis of imine-based COFs, can be exploited as an effective growth modifier capable of selectively titrating terminal amines on 2D COF layers to facilitate anisotropic crystal growth.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Central Tribal University of Andhra Pradesh (CTUAP), Andhra Pradesh, 535003, India.
Hydrogen is a zero-emissive fuel and has immense potential to replace carbon-emitting fuels in the future. The development of efficient H sensors is essential for preventing hazardous situations and facilitating the widespread usage of hydrogen. Chemiresistors are popular gas sensors owing to their attractive properties such as fast response, miniaturization, simple integration with electronics and low cost.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!