Plant elicitor peptides (Peps) are conserved regulators of defense responses and models for the study of damage-associated molecular pattern-induced immunity. Although present as multigene families in most species, the functional relevance of these multigene families remains largely undefined. While Arabidopsis Peps appear largely redundant in function, previous work examining Pep-induced responses in maize (Zm) implied specificity of function. To better define the function of individual ZmPeps and their cognate receptors (ZmPEPRs), activities were examined by assessing changes in defense-associated phytohormones, specialized metabolites and global gene expression patterns, in combination with heterologous expression assays and analyses of CRISPR/Cas9-generated knockout plants. Beyond simply delineating individual ZmPep and ZmPEPR activities, these experiments led to a number of new insights into Pep signaling mechanisms. ZmPROPEP and other poaceous precursors were found to contain multiple active Peps, a phenomenon not previously observed for this family. In all, seven new ZmPeps were identified and the peptides were found to have specific activities defined by the relative magnitude of their response output rather than by uniqueness. A striking correlation was observed between individual ZmPep-elicited changes in levels of jasmonic acid and ethylene and the magnitude of induced defense responses, indicating that ZmPeps may collectively regulate immune output through rheostat-like tuning of phytohormone levels. Peptide structure-function studies and ligand-receptor modeling revealed structural features critical to the function of ZmPeps and led to the identification of ZmPep5a as a potential antagonist peptide able to competitively inhibit the activity of other ZmPeps, a regulatory mechanism not previously observed for this family.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.15022DOI Listing

Publication Analysis

Top Keywords

plant elicitor
8
elicitor peptides
8
defense responses
8
multigene families
8
observed family
8
zmpeps
5
differential activities
4
activities maize
4
maize plant
4
peptides mediators
4

Similar Publications

<b>Background and Objective:</b> Prolonged utilization of chemical fertilizers can harm the soil and disturb the equilibrium of nutrients, resulting in a decline in cherry tomato yield. To enhance the growth of cherry tomato plants, it is necessary to add organic chemicals. The research aimed to determine the best elicitor biosaka concentration to apply to evoke the plant growth of cherry tomatoes (<i>Solanum lycopersicum</i> L.

View Article and Find Full Text PDF

<b>Background and Objective:</b> Todolo coffee (<i>Coffea arabica</i> L. var. typica) is the oldest commercially grown coffee in the Toraja region of South Sulawesi and is currently at risk of extinction.

View Article and Find Full Text PDF

Light-emitting diode (LED) lamps are efficient elicitors of secondary metabolites. To investigate the influence of LED light on steviol glycosides (SGs) and phenolic compounds biosynthesis, stevia shoots were cultured under the following LED lights: white-WL, blue-B, red-R, 70% red and 30% blue-RB, 50% UV, 35% red and 15% blue-RBUV, 50% green, 35% red and 15% blue-RBG, 50% yellow, 35% red and 15% blue-RBY, 50% far-red, 35% red and 15% blue-RBFR and white fluorescent light (WFl, control). RBG light stimulated shoots' biomass production.

View Article and Find Full Text PDF

Triticum mosaic virus (TriMV; Poacevirus tritici) is the founding member of the genus Poacevirus within the family Potyviridae. TriMV is one of the components of the wheat streak mosaic disease (WSMD) complex, an economically significant wheat disease in the Great Plains region of the USA. TriMV contains a single-stranded positive-sense RNA genome of 10,266 nts with an unusually long 5'-nontranslated region of 739 nts.

View Article and Find Full Text PDF

Endocytosis is an essential cellular process that uptakes substances into cells at the plasma membrane from the extracellular space and plays a major role in plant development and responses to environmental stimuli. Research has shown that plant membrane-resident proteins are endocytosed and transported into plant endosomes in response to pathogen-secreted elicitors. However, there is no conclusive experimental evidence demonstrating how secreted cytoplasmic effectors from oomycetes and fungi enter host cells during infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!