Synthesis and Evaluation of Molecularly Imprinted Polymers for the Determination of Di(2-ethylhexyl) Phthalate (DEHP) in Water Samples.

Bull Environ Contam Toxicol

CONACYT, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico.

Published: November 2020

A molecularly imprinted polymer for the selective determination of Di(2-ethylhexyl) phthalate (DEHP) in water was synthesized and evaluated. This was accomplished by the use of sodium methacrylate as the monomer, toluene as a porogen, ethylene glycol dimethacrylate as a crosslinker, azobisisobutyronitrile as initiator and DEHP as a template molecule to generate the selectivity of the polymer for the compound, as well as synthesizing non-imprinted polymers. Three different polymerization approaches were used, emulsion, bulk and co-precipitation, the polymers obtained by emulsion presented a high retention rate reaching 99%. The method was able to pre-concentrate DEHP in water samples up to 250 times. To evaluate the applicability of the method, concentrations in fortified and bottled water were assessed using our polymer and determining DEHP concentrations by gas chromatography with mass spectrometry. Reported concentrations in bottled water were 12.1 µg/L, well above reference values established by the U.S. Environmental Protection Agency.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00128-020-03023-4DOI Listing

Publication Analysis

Top Keywords

dehp water
12
molecularly imprinted
8
determination di2-ethylhexyl
8
di2-ethylhexyl phthalate
8
phthalate dehp
8
water samples
8
bottled water
8
dehp
5
water
5
synthesis evaluation
4

Similar Publications

Biofilm development as a factor driving the degradation of plasticised marine microplastics.

J Hazard Mater

December 2024

College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, QLD 4811, Australia.

Biodegradation of microplastics facilitated by natural marine biofouling is a promising approach for ocean bioremediation. However, implementation requires a comprehensive understanding of how interactions between the marine microbiome and dominant microplastic debris types (e.g.

View Article and Find Full Text PDF

DEHP-Induced Glioblastoma in Zebrafish Is Associated with Circadian Dysregulation of PER3.

Toxics

November 2024

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.

DEHP is a plasticizer that is widely found in our water environment and poses a significant risk to the environment and human health. Long-term exposure to DEHP can cause endocrine disruption and interfere with the organism's normal functioning. In order to explore the potential effects of DEHP on the development of biological brain tissues, this study used bioinformatics analysis to confirm the diagnostic and prognostic value of PER3 in gliomas and further validated the neurotoxicity of DEHP using methods such as behavioral experiments and molecular biology in zebrafish.

View Article and Find Full Text PDF

Lactiplantibacillus plantarum P101 Alleviates Liver Toxicity of Combined Microplastics and Di-(2-Ethylhexyl) Phthalate via Regulating Gut Microbiota.

Probiotics Antimicrob Proteins

January 2025

State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.

Microplastics (MPs) and Di-(2-ethylhexyl) phthalate (DEHP) as emerging contaminants, have caused increasing concern due to their co-exposure risks and toxicities to humans. Lactic acid bacteria have been demonstrated to play a significant role in the mitigation of organismal damage. Probiotic intervention is widely recognized as a safe and healthy therapeutic strategy for targeting the mitigation of organic damage.

View Article and Find Full Text PDF

Spatial Distribution and Chronic Ecological risk Assessment of Typical Phthalate Esters in the Surface Waters of China.

Bull Environ Contam Toxicol

December 2024

School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui West Rode, Xiqing District, Tianjin, 300384, China.

The chronic ecological risks posed by residual PAEs in China remain unclear. In this study, we analyzed the spatial distribution of five typical PAEs in the surface waters of China, dibutyl phthalate (DBP), diethylhexyl phthalate (DEHP), butylbenzyl phthalate (BBP), diethyl phthalate (DEP), and dimethyl phthalate (DMP). The highest concentration of PAEs were detected in the Liao River, ranging from 5 to 79.

View Article and Find Full Text PDF

Integration of metagenomic analysis and metabolic modeling reveals microbial interactions in activated sludge systems in response to nanoplastics and plasticizers.

Water Res

March 2025

MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Zhejiang University-University of Edinburgh Joint Research Centre for Engineering Biology, International Campus, Zhejiang University, Haining 314400, China. Electronic address:

Nanoplastics and plasticizers are prevalent in activated sludge and pose a potential threat to microbial communities in wastewater treatment systems. However, studies on the effects of nanoplastics and plasticizers on the interaction mechanisms and metabolic functions of microbial communities in activated sludge systems are still scarce. In this study, the responses of microbial interactions and metabolic functions to PVC nanoplastics (PVCNPs) and bis(2-ethylhexyl) phthalate (DEHP) in activated sludge were investigated via a combination of amplicon sequencing, metagenome sequencing, and metabolic modeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!