Direct C-H bond halogenation and pseudohalogenation of hydrocarbons mediated by high-valent 3d metal-oxo species.

Dalton Trans

Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.

Published: October 2020

Late-stage direct functionalization of the C-H bond is synthetically desirable. Metalloenzymes having metal-oxo active sites are well known to selectively catalyze hydroxylation and halogenation reactions with high efficiency. This review highlights the recent developments in the field of direct C-H halogenation and pseudohalogenation reactions catalyzed by the functional models of metalloenzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0dt02533jDOI Listing

Publication Analysis

Top Keywords

direct c-h
8
c-h bond
8
halogenation pseudohalogenation
8
bond halogenation
4
pseudohalogenation hydrocarbons
4
hydrocarbons mediated
4
mediated high-valent
4
high-valent metal-oxo
4
metal-oxo species
4
species late-stage
4

Similar Publications

A Cu-promoted highly chemoselective dimerization of 5-aminopyrazoles to produce pyrazole-fused pyridazines and pyrazines is reported. The protocol generates switchable products via the direct coupling of C-H/N-H, C-H/C-H and N-H/N-H bonds, with the merits of broad substrate scope and high functional group compatibility. Gram-scale experiments demonstrated the potential applications of this reaction.

View Article and Find Full Text PDF

Isoindigo (IID)-based non-fullerene acceptors, known for their broad absorption spectra and high charge carrier mobilities, play a crucial role in organic photovoltaics. In this study, two A-DA'D-A type unfused ring acceptors (URAs), IDC8CP-IC and IDC6CP-IC, were designed and synthesized using cyclopentadithiophene (CPDT) and IID core units, each functionalized with different alkyl chains (2-hexyldecyl and 2-octyldodecyl), through an atom- and step-efficient direct C-H arylation (DACH) method. Both URAs, despite the absence of non-covalent conformation locking between CPDT and IID, demonstrated favorable molecular planarity, broad absorption ranges, low band gaps, and high molar absorption coefficients.

View Article and Find Full Text PDF

Achieving axially chiral biaryl dialdehydes through asymmetric catalysis remains significantly challenging due to the lack of efficient strategies. In this report, we developed a rhodium-catalyzed enantioselective C-H amidation through chiral transient directing group strategy. With this new approach, a series of axially chiral amido dialdehydes were achieved in up to 86% yields with 99.

View Article and Find Full Text PDF

Hydrogen-substituted graphdiyne (HsGDY) is a two-dimensional material with an sp-sp carbon skeleton featuring a band gap and a porous structure that enhances ion diffusion. In previous reports, HsGDY growth was limited to metal substrates such as Cu, which then required transfer. Here, we developed a sandwich method that allows HsGDY to be grown directly on the target substrate.

View Article and Find Full Text PDF

Palladium-Catalyzed Oxidative Allene-Allene Cross-Coupling.

J Am Chem Soc

January 2025

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.

Direct cross-coupling reactions between two similar unactivated partners are challenging but constitute a powerful strategy for the creation of new carbon-carbon bonds in organic synthesis. [4]Dendralenes are a class of acyclic branched conjugated oligoenes with great synthetic potential for the rapid generation of structural complexity, yet the chemistry of [4]dendralenes remains an unexplored field due to their limited accessibility. Herein, we report a highly selective palladium-catalyzed oxidative cross-coupling of two allenes with the presence of a directing olefin in one of the allenes, enabling the facile synthesis of a broad range of functionalized [4]dendralenes in a convergent modular manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!