We measure Stokes parameter correlations in analogy to the intensity correlation measurements in the original Hanbury-Brown & Twiss configuration by realizing an experimental setup by combining a Schaefer-Collett or Berry-Gabrielse-Livingston polarimeter with a Hanbury-Brown & Twiss intensity interferometer. We investigate true unpolarized light emitted from a broadband thermal light source, which we realize by an erbium-doped fiber amplifier, thus being an ideal source of true unpolarized light. We find that all Stokes parameter correlations ⟨⟩, ∈{1,2,3} are equal to 0.5⟨⟩. The proven invariance of the Stokes parameter correlations against retardation by wave-plates clearly shows for the first time, to the best of our knowledge, that our true unpolarized thermal light represents type I unpolarized light in accordance with a theoretical prediction for a classification of unpolarized light postulated more than 20 years ago.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.409322DOI Listing

Publication Analysis

Top Keywords

unpolarized light
20
stokes parameter
16
parameter correlations
16
true unpolarized
16
thermal light
12
unpolarized thermal
8
light
8
hanbury-brown twiss
8
unpolarized
7
ultra-fast stokes
4

Similar Publications

Highly Efficient and Linearly Polarized Light Emission of Micro-LED Integrated with Double-Functional Meta-Grating.

Nano Lett

January 2025

Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Provincial Key Laboratory of Photonics and Information Technology, Xi'an Jiaotong University, Xi'an 710049, China.

Linearly polarized micro light-emitting diodes (LP-Micro-LEDs) exhibit exceptional potential across diverse fields. The existing methods to introduce polarization to initially unpolarized Micro-LEDs and to further enhance the degree of polarization are, however, at the expense of low luminous efficiency. We fabricated a GaN-based blue Micro-LED integrated with a Al nanograting and a specially designed Ag/GaN meta-grating, which overcomes the dilemma between the luminous efficiency and polarization degree by simultaneously introducing the effects of mode selection and energy recycling.

View Article and Find Full Text PDF

Constraint on an Exotic Parity-Odd Spin- and Velocity-Dependent Interaction with Atom Interferometer.

Phys Rev Lett

November 2024

MOE Key Laboratory of Fundamental Physical Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF, and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.

Article Synopsis
  • A high-precision test of the spin- and velocity-dependent (SVD) interaction between spin-polarized protons and unpolarized nucleons is conducted using a Bragg atom interferometer with ^{87}Rb atoms.
  • The experiment enhances the precision of free fall measurements to 9.2×10^{-9}, significantly improving on earlier polarized atom experiments.
  • It also provides a new constraint on the SVD interaction coupling, indicating greater sensitivity and opening new avenues for studying physics with polarized-atom interferometers.
View Article and Find Full Text PDF

Blackbody radiation is incoherent and omnidirectional, whereas various novel applications in renewable energy require a degree of directional control of a thermally emitted beam. So far, such directional control has required nano-structuring the surface of a thermally emitting material, typically by forming diffraction gratings. This, however, necessitates lithography and usually results in polarization-dependent properties.

View Article and Find Full Text PDF

Water bodies are critical to the environment, providing numerous ecological benefits; however, human activities increasingly threaten their quality. Natural water systems exhibit regional variability, dominated by organic and inorganic species, rendering in-situ measurements insufficient. Current remote sensing methods often overlook the impact of surface light components, which vary with solar radiation and wave intensity.

View Article and Find Full Text PDF

Unidirectional Chiral Emission via Twisted Bi-layer Metasurfaces.

Nat Commun

November 2024

Science, Mathematics, and Technology (SMT), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore, 487372, Singapore.

Controlling and channeling light emissions from unpolarized quantum dots into specific directions with chiral polarization remains a key challenge in modern photonics. Stacked metasurface designs offer a potential compact solution for chirality and directionality engineering. However, experimental observations of directional chiral radiation from resonant metasurfaces with quantum emitters remain obscure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!