Download full-text PDF |
Source |
---|
PLoS One
January 2025
School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, P. R. China.
Purpose: To evaluate the corneal biomechanical properties of phacoemulsification in the treatment of cataract patients.
Methods: Pertinent studies were searched in PubMed, EMBASE, Web of Science and clinicaltrials.gov.
Transl Vis Sci Technol
January 2025
UCL Institute of Ophthalmology, University College London, London, UK.
Purpose: A human model able to simulate the manifestation of corneal endothelium decompensation could be advantageous for wound healing and future cell therapy assessment. The study aimed to establish an ex vivo human cornea endothelium wound model where endothelium function can be evaluated by measuring corneal thickness changes.
Methods: The human cornea was maintained in an artificial anterior chamber, with a continuous culture medium infusion system designed to sustain corneal endothelium and epithelium simultaneously.
Transl Vis Sci Technol
January 2025
College of Optometry, University of Houston, Houston, TX, USA.
Purpose: To characterize frequency-dependent wave speed dispersion in the human cornea using microliter air-pulse optical coherence elastography (OCE), and to evaluate the applicability of Lamb wave theory for determining corneal elastic modulus using high-frequency symmetric (S0) and anti-symmetric (A0) guided waves in cornea.
Methods: Wave speed dispersion analysis for transient (0.5 ms) microliter air-pulse stimulation was performed in four rabbit eyes ex vivo and compared to air-coupled ultrasound excitation.
Curr Eye Res
January 2025
Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA.
Purpose: This study aims to conduct a mini review of published literature concerning the role of exosomes in the field of ophthalmology, with a specific focus on Age-Related Macular Degeneration (AMD).
Methods: In this study, a comprehensive search was conducted using PubMed and Google Scholar to identify relevant publications. Additionally, trials submitted to clinicaltrials.
Adv Sci (Weinh)
January 2025
State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China.
Corneal substitutes with structural and compositional characteristics resembling those of natural corneas have attracted considerable attention. However, biomimicking the complex hierarchical organization of corneal stroma is challenging. In this study, humanized corneal stroma-like adhesive patches (HCSPs) are prepared through a multi-step process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!