The tettigoniid subfamily Phyllophorinae, distributed in Southeast Asia and Australia, is poorly known. Our study of the biology of Giant Katydid Siliquofera grandis (Blanchard, 1853) from a laboratory culture has shown that these insects mate more than once, the females lay a total of up to 400 eggs during their life, and these hatch after 2-2.5 months. The life cycle from egg to death takes longer than one year. In the laboratory, the insects fed mainly on leaves of various Rosaceae, Ficus, and lettuce, and on fruits.                It is known that the males of hooded katydids lack the tegminal stridulatory apparatus typical for Tettigoniidae, but are capable of producing protest sounds using their coxosternal sound-producing organs for stridulation. Here, protest stridulation of the males and females and the sound-producing organs used to produce it have been analyzed in Phyllophorina kotoshoensis Shiraki, 1930 and S. grandis. In addition, nymphal protest sounds produced by friction of the metafemur against the edge of the pronotum and adult protest signals produced with the wings are described. In S. grandis, vibratory signals have been described and studied for the first time: territorial, protest, drumming and rhythmic low-amplitude vibrations emitted by adults and nymphs and pre- and postcopulatory vibrations of the males and females. The territorial signals not accompanied with visible movements of the body may be produced by contracting the antagonist muscles of the thorax and possibly of the legs. Using their coxosternal sound-producing organs males of S. grandis produced also an audible courtship song lasting for several seconds. Acoustic signals may thus both regulate intrapopulation relations and serve for interspecific communication (protest signals). The acoustic communication in Phyllophorinae is probably especially important during mating behavior.

Download full-text PDF

Source
http://dx.doi.org/10.11646/zootaxa.4852.3.3DOI Listing

Publication Analysis

Top Keywords

sound-producing organs
12
vibratory signals
8
hooded katydids
8
protest sounds
8
coxosternal sound-producing
8
males females
8
protest signals
8
signals
6
protest
6
biology sounds
4

Similar Publications

Stridulatory Organs and Sound Recognition of Three Species of Longhorn Beetles (Coleoptera: Cerambycidae).

Insects

October 2024

Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China.

Sound is an important medium of communication among insects. Some longhorn beetles produce sounds during their daily activities, and these sounds play a role in courtship, predation, and defense. However, whether there are differences in the sounds emitted by longhorn beetles and how to distinguish and recognize these sounds have not been investigated in detail.

View Article and Find Full Text PDF

Redistribution of vocal snapping shrimps under climate change.

Sci Total Environ

December 2024

CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.

A variety of marine organisms can produce sounds that are important components of the marine soundscape and play a critical role in maintaining marine biodiversity. Climate change has greatly altered the geographical ranges of many marine species, including sound-producing organisms. However, the direction and the magnitude of the potential impact of climate change on the geographical distribution of sound-producing marine organisms in future remain largely unknown.

View Article and Find Full Text PDF

The turbulent soundscape of intertidal oyster reefs.

bioRxiv

August 2024

Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia 22904, USA.

Turbulence and sound are important cues for oyster reef larval recruitment. Numerous studies have found a relationship between turbulence intensity and swimming behaviors of marine larvae, while others have documented the importance of sounds in enhancing larval recruitment to oyster reefs. However, the relationship between turbulence and the reef soundscape is not well understood.

View Article and Find Full Text PDF

The potential of acoustic monitoring of aquatic insects for freshwater assessment.

Philos Trans R Soc Lond B Biol Sci

June 2024

Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 Rue Cuvier, 75005 Paris, France.

Aquatic insects are a major indicator used to assess ecological condition in freshwater environments. However, current methods to collect and identify aquatic insects require advanced taxonomic expertise and rely on invasive techniques that lack spatio-temporal replication. Passive acoustic monitoring (PAM) is emerging as a non-invasive complementary sampling method allowing broad spatio-temporal and taxonomic coverage.

View Article and Find Full Text PDF

Teleost fishes have evolved a number of sound-producing mechanisms, including vibrations of the swim bladder. In addition to sound production, the swim bladder also aids in sound reception. While the production and reception of sound by the swim bladder has been described separately in fishes, the extent to which it operates for both in a single species is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!