The purpose of the investigation was to study the effect of water storage on the bond strengths between silanized, silicoated Ag-Pd alloys and veneered composites, in comparison with the bond strengths of systems with conventional retention beads. Furthermore, the mechanism of the bonding was examined. The bond strength of silanized, silicoated dry specimens and similar specimens stored in water was measured by four-point bending. Water storage for 90 days at 37 degrees C reduced the bond strength by approximately 30% to about 15-20 MPa. Mechanical retention beads caused bond strengths of approximately 16-18 MPa which were unaffected by water storage. SEM and microprobe investigations showed that sandblasting with AI2O3 prior to silanization caused substantial numbers of cracks and porosities in the surface layer of the alloy, partly filled with Al2O3. Some particles of silicon oxide in these surface defects were produced by the flame-spraying of the so-called silicoating technique. Further painting of the surface with a silane adhesion primer provided chemical bonding to the composite at the densely spaced Si-O-H-containing silica particles. Many cracks were observed in the interfaces between these particles; thus, water is likely to penetrate the interface with time. The bond strength is most likely reduced by reaction between water and the composite/Si-O structure. The silicon oxide particles are probably attached to the alloy substrate by mechanical retention. Without sandblasting, no bonding was obtained by means of the silicoating technique.

Download full-text PDF

Source
http://dx.doi.org/10.1177/00220345870660081901DOI Listing

Publication Analysis

Top Keywords

silicoating technique
12
water storage
12
bond strengths
12
bond strength
12
ag-pd alloys
8
silanized silicoated
8
retention beads
8
mechanical retention
8
silicon oxide
8
water
6

Similar Publications

The purpose of this study was to determine the most effective method for bonding composite resin to artificially aged amalgam. A spherical amalgam alloy was triturated and condensed by hand into cylindrical plastic molds (6 mm in diameter and 4 mm in height) to create 90 specimens, which were then aged for 2 weeks in closed plastic containers at 23°C. The amalgam surfaces underwent 1 of 3 surface treatments (n = 30 per treatment): (1) air particle abrasion (APA) with 50-μm aluminum oxide particles applied with a force of 45 psi from a 10-mm distance, followed by rinsing with deionized water for 60 seconds; (2) APA following the same protocol with subsequent application of a metal primer (Alloy Primer); or (3) coating with 30-μm silica (CoJet) at a force of 45 psi from a 10-mm distance until the surface turned black.

View Article and Find Full Text PDF

Background: Several techniques such as sand blast, silicoating, and laser irradiation have been introduced for reliable bond between zirconia and resin cement. This study aimed to assess and compare the effect of three types of lasers on the shear bond strength (SBS) of zirconia to resin cement.

Materials And Methods: In this study, 55 zirconia disks (6 mm diameter × 3 mm thickness) were randomly divided into five groups: control (1), sandblast (2), carbon dioxide (CO) (3), erbium-doped yttrium aluminum garnet (Er: YAG) (4), and neodymium-doped yttrium aluminum garnet (Nd: YAG) (5) laser irradiation.

View Article and Find Full Text PDF

Objective: To evaluate the microtensile bond strength of four dental computer-aided design/computer-aided manufactured (CAD/CAM) ceramics after application of four different surface treatments.

Materials And Methods: Four dental CAD/CAM ceramics were tested: feldspathic ceramic (VITABLOCKS-Mark II), polymer-infiltrated ceramic network (VITA ENAMIC), zirconia-reinforced lithium silicate (VITA SUPRINITY), and yttria-stabilized zirconia (VITA YZ T). Four surface treatments were applied: no treatment, 5% hydrofluoric acid-etching, airborne particle abrasion, and tribochemical silica coating.

View Article and Find Full Text PDF

Objectives: To determine the best bonding method of orthodontic attachment among monolithic zirconia, feldspathic porcelain, hybrid porcelain, and the impact of surface-conditioning methods using a three-dimensional optical profilometer after debonding.

Materials And Methods: 56 feldspathic porcelain, 56 monolithic zirconia, and 56 hybrid porcelain samples were divided into four surface treatment subgroups: (1) hydrofluoric (HF) acid etch + silane, (2) AlO sandblasting + silane, (3) silicoating (SiO), and (4) diamond bur + silane. The specimens were tested to evaluate shear bond strength (SBS).

View Article and Find Full Text PDF

Effects of sandblasting and silicoating on bond strength between titanium and porcelain.

Niger J Clin Pract

September 2018

Department of Prosthodontics, Faculty of Dentistry, Ege University, Izmir, Turkey.

Purpose: The aim of this study was to evaluate the effects of the different sized alumina particles (50 and 150 μm) and tribochemical silica-modified alumina particles (110 μm) on titanium (Ti) surface to identify the most effective method of increasing the bond strength between porcelain and Ti.

Materials And Methods: Thirty rectangular plates (15 mm × 50 mm × 1 mm) of commercially pure Ti (Cp Ti) Grade 5 (GC Dental Industrial Corporation, Tokyo, Japan) were divided into three groups for different surface modification procedures (n = 10). Ti bonder porcelain, opaque, and dentin layers were fired separately on Ti plates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!