Considerable effort has been devoted to elucidating the phylogenetic relationships of tetrigides. However, there is still no commonly accepted phylogenetic hypothesis. Therefore, the phylogenetic relationships among some subfamilies remain unclear; e.g., Cladonotinae is a controversial group, in which the phylogenetic relationships between genera and the boundaries of some of the included genera are unclear, causing some of the taxa to be difficult to identify. Therefore, an in-depth phylogenetic analysis of Cladonotinae is urgently needed. In this study, a robust phylogenetic framework for the tetrigides was reconstructed based on the combined mitochondrial cytochrome oxidase subunit I (COI), 16S ribosomal RNA (16S rRNA), and nuclear 18S ribosomal RNA (18S rRNA) gene sequences of 25 species belonging to 16 genera of Tetrigoidea from China, which included 13 species from 8 genera of Cladonotinae. Phylogenetic inferences were performed using the combined dataset and Bayesian inference (BI) and Maximum Parsimony (MP) methods, and the phylogenetic tree of Cladonotinae was reconstructed. All inferences based on the results of the present study supported the Cladonotinae subfamily as a polyphyletic group; within the Cladonotinae subfamily, Tetradinodula, and Tuberfemurus were closely related to Tetriginae, while Austrohancockia and Gibbotettix showed a close relationship to the Scelimenidae subfamily. Additionally, a new genus and new species of the Cladonotinae subfamily are described and illustrated: Hainantettix Deng, gen. nov. and Hainantettix strictivertex Deng, sp. nov.

Download full-text PDF

Source
http://dx.doi.org/10.11646/zootaxa.4809.3.8DOI Listing

Publication Analysis

Top Keywords

phylogenetic relationships
12
cladonotinae subfamily
12
cladonotinae
8
tetrigoidea china
8
genus species
8
phylogenetic
8
ribosomal rna
8
molecular data
4
data provide
4
provide insights
4

Similar Publications

Premise: Considering rapidly changing fire regimes due to anthropogenic disturbances to climate and fuel loads, it is crucial to understand the underpinnings driving fire-adapted trait evolution. Among the oldest lineages affected by fire is Coniferae. This lineage occupies a variety of fire prone and non-fire prone habitats across all hemispheres and has four fire-adapted traits: (1) thick bark; (2) serotiny; (3) seedling grass stage; and (4) resprouting ability.

View Article and Find Full Text PDF

Background: The evolution and development of flowers are biologically essential and of broad interest. Maize and sorghum have similar morphologies and phylogeny while harboring different inflorescence architecture. The difference in flower architecture between these two species is likely due to spatiotemporal gene expression regulation, and they are a good model for researching the evolution of flower development.

View Article and Find Full Text PDF

Genome-wide identification and expression analysis of the WRKY gene family in Mikania micrantha.

BMC Genomics

January 2025

College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan Province, 650224, China.

Background: WRKY transcription factors (TFs) regulate plant responses to environmental stimuli and development, including flowering. Despite extensive research on different species, their role in the invasive plant Mikania micrantha remains to be explored. The aim of this study was to identify and analyze WRKY genes in M.

View Article and Find Full Text PDF

The ESCRT machinery mediates membrane remodeling in numerous processes in cells including cell division and nuclear membrane reformation. The identification of ESCRT homologs in Asgard archaea, currently considered the closest prokaryotic relative of eukaryotes, implies a role for ESCRTs in the membrane remodeling processes that occurred during eukaryogenesis. Yet, the function of these distant ESCRT homologs is mostly unresolved.

View Article and Find Full Text PDF

Golden camellia species are endangered species with great ecological significance and economic value in the section Chrysantha of the genus Camellia of the family Theaceae. Literature shows that more than 50 species of golden camellia have been found all over the world, but the exact number remains undetermined due to the complex phylogenetic background, the non-uniform classification criteria, and the presence of various synonyms and homonyms; and phylogenetic relationships among golden camellia species at the gene level are yet to be disclosed. Therefore, it is necessary to investigate the divergence time and phylogenetic relationships between all golden camellia species at the gene level to improve their classification system and achieve accurate identification of them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!