Background: Systemic sclerosis (SSc) is characterized by excessive deposition of collagen in the skin and internal organs. Recent studies have shown that chemokine (C-X-C motif) ligands (CXCLs) are involved in the pathogenesis of SSc.

Objective: Our aim was to examine the anti-fibrotic potential of CXCL17, a newly discovered chemokine, in cultured skin fibroblasts and in a bleomycin-induced SSc mouse model. Moreover, we examined serum level of CXCL17 in patients with SSc.

Methods: Type I collagen expression was evaluated in SSc skin and cultured fibroblasts treated with CXCL17 using immunoblotting and quantitative reverse transcription-PCR. Serum CXCL17 levels were determined using enzyme-linked immunosorbent assay in 63 patients with SSc and 17 healthy subjects. A bleomycin-induced SSc mouse model was used to evaluate the effect of CXCL17 on skin fibrosis.

Results: CXCL17 reduced the expression of type I collagen in healthy control fibroblasts. CXCL17 also induced matrix metalloproteinase 1 (MMP1) and miR-29 expression in fibroblasts, indicating that CXCL17 regulates type I collagen expression in part via post-transcriptional mechanisms through MMP1 and miR-29. We found that local injection of CXCL17 attenuated bleomycin-induced skin fibrosis in mice. CXCL17 levels in SSc skin were lower than those in healthy controls, in contrast to the high serum CXCL17 levels in patients with SSc. The low expression of CXCL17 in SSc skin possibly affects type I collagen accumulation in this disease.

Conclusion: Our data indicate that understanding CXCL17 signaling may lead to a better therapeutic approach for SSc.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jdermsci.2020.09.010DOI Listing

Publication Analysis

Top Keywords

type collagen
20
cxcl17
13
mmp1 mir-29
12
ssc skin
12
cxcl17 levels
12
ssc
9
skin
8
skin fibroblasts
8
systemic sclerosis
8
bleomycin-induced ssc
8

Similar Publications

The mesenchymal stem cell (MSC) secretome plays a pivotal role in shaping the tumor microenvironment, influencing both cancer progression and potential therapeutic outcomes. In this research, by using publicly available dataset GSE196312, we investigated the role of MSC secretome on breast cancer cell gene expression. Our results raveled differentially expressed genes, including the upregulation of Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 1 (PREX1), C-C Motif Chemokine Ligand 28 (CCL28), and downregulation of Collagen Type I Alpha 1 Chain (COL1A1), Collagen Type I Alpha 3 Chain (COL1A3), Collagen Type III Alpha 1 Chain (COL3A1), which contributing to extra cellular matrix (ECM) weakening and promoting cell migration.

View Article and Find Full Text PDF

Burn wounds are challenging to treat due to considerable tissue damage and fluid loss. Creating wound dressings from natural and biological materials makes it possible to treat wounds and promote rapid epithelialization to speed healing and restore skin function. As a result, the ability of a collagen scaffold (Col) made from rainbow trout (Oncorhynchus mykiss) and putative bioactive phytochemical components from a Sargassum glaucescens (S.

View Article and Find Full Text PDF

Osteogenesis imperfecta (OI) is a group of rare genetic disorders most commonly caused by reduced amount of biologically normal collagen type I, a structural component of the gastrointestinal tract and abdominal wall. The risk of gastrointestinal (GI) disease in individuals with OI is not well understood, despite GI complaints being frequently reported by the OI population. To investigate the risk of GI diseases in individuals with OI.

View Article and Find Full Text PDF

Osteogenesis imperfecta (OI) is an inheritable skeletal disorder characterized by bone fragility often caused by pathogenic variants in the COL1A1 gene. Current OI mouse models with a glycine substitution in Col1a1 exhibit excessive severity, thereby limiting long-term pathophysiological analysis and drug effect assessments. To address this limitation, we constructed a novel OI mouse model mimicking a patient with OI type III.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is an age-related neurodegenerative disorder affecting nearly 50 million individuals worldwide. Besides aging, various comorbidities can increase the risk of AD, such as asthma. However, the molecular mechanism(s) underlying this asthma-associated AD exacerbation is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!