Wildlife translocations, which involve the introduction of naive hosts into new environments with novel pathogens, invariably pose an increased risk of disease. The meningeal worm Parelaphostrongylus tenuis is a nematode parasite of the white-tailed deer (Odocoileus virginianus), which serves as its primary host and rarely suffers adverse effects from infection. Attempts to restore elk (Cervus canadensis) to the eastern US have been hampered by disease caused by this parasite. Using DNA sequence data from mitochondrial and nuclear genes, we examined the hypothesis that elk translocated within the eastern US could be exposed to novel genetic variants of P. tenuis by detailing the genetic structure among P. tenuis taken from white-tailed deer and elk at a source (Kentucky) and a release site (Missouri). We found high levels of diversity at both mitochondrial and nuclear DNA in Missouri and Kentucky and a high level of differentiation between states. Our results highlight the importance of considering the potential for increased disease risk from exposure to novel strains of parasites in the decision-making process of a reintroduction or restoration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11010146PMC
http://dx.doi.org/10.1017/S0031182020001912DOI Listing

Publication Analysis

Top Keywords

missouri kentucky
8
levels diversity
8
white-tailed deer
8
mitochondrial nuclear
8
genetic analyses
4
analyses parasitic
4
parasitic nematode
4
nematode missouri
4
kentucky reveal
4
reveal unexpected
4

Similar Publications

Background: Pediatric respiratory syncytial virus (RSV)-related acute lower respiratory tract infection (LRTI) commonly requires hospitalization. The Clinical Progression Scale Pediatrics (CPS-Ped) measures level of respiratory support and degree of hypoxia across a range of disease severity, but it has not been applied in infants hospitalized with severe RSV-LRTI.

Methods: We analyzed data from a prospective surveillance registry of infants hospitalized for RSV-related complications across 39 U.

View Article and Find Full Text PDF

Purpose: To validate the performance of the Notal OCT Analyzer (NOA) in processing self-administered OCT images from an OCT system designed for home use (home OCT [HOCT]) as part of a pivotal study aimed at achieving de novo United States Food and Drug Admininstration marketing authorization.

Design: A prospective quantitative cross-sectional artificial intelligence study.

Participants: The study enrolled adults aged ≥55 years diagnosed with neovascular age-related macular degeneration (nAMD) in ≥1 eligible eye with a best-corrected visual acuity of 20/320 or better.

View Article and Find Full Text PDF

Integrating Protein Language Model and Molecular Dynamics Simulations to Discover Antibiofouling Peptides.

Langmuir

January 2025

Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States.

Antibiofouling peptide materials prevent the nonspecific adsorption of proteins on devices, enabling them to perform their designed functions as desired in complex biological environments. Due to their importance, research on antibiofouling peptide materials has been one of the central subjects of interfacial engineering. However, only a few antibiofouling peptide sequences have been developed.

View Article and Find Full Text PDF

The scientific community has long benefited from the opportunities provided by data reuse. Recognizing the need to identify the challenges and bottlenecks to reuse in the agricultural research community and propose solutions for them, the data reuse working group was started within the AgBioData consortium framework. Here, we identify the limitations of data standards, metadata deficiencies, data interoperability, data ownership, data availability, user skill level, resource availability, and equity issues, with a specific focus on agricultural genomics research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!