Background: Dietary patterns were associated with the risk of chronic disease development and outcome-related diseases. In this study, we aimed to compare the correlation between dietary patterns and metabolic syndrome (MetS) using two methods for identifying dietary patterns.
Methods: The participants (n = 25,569) aged ≥40 years with impaired kidney function were retrieved from Mei Jau (MJ) Health Screening database from 2008 to 2010. Dietary patterns were identified by principal component analysis (PCA) and reduced rank regression (RRR) from twenty-two food groups using PROC FACTOR and PROC PLS functions.
Results: We identified two similar dietary pattern characteristics (high intakes of deep fried foods, preserved or processed foods, dipping sauce, meat, sugary drinks, organ meats, jam/honey, fried rice/flour products, instant noodles and eggs) derived by PCA and RRR. Logistic regression analysis revealed that RRR-derived dietary pattern scores were positively associated with an odds ratio (OR = 1.70, 95% CI: 1.56, 1.86) of having MetS than PCA-derived dietary pattern scores (OR = 1.38, 95% CI: 1.27, 1.51). The correlations between RRR-derived dietary pattern scores and elevated systolic and diastolic blood pressure (OR = 1.30 for both) or low high density lipoprotein cholesterol in women (OR = 1.32) were statistically significant but not significant in PCA-derived dietary pattern scores.
Conclusions: Our findings suggest that RRR gives better results when studying behavior related dietary patterns in association with MetS. RRR may be more preferable to provide dietary information for developing dietary guidelines among people with MetS. Further studies with prospective measurements are needed to verify whether RRR is a useful analytic tool for the association between dietary patterns and other chronic diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7559471 | PMC |
http://dx.doi.org/10.1186/s12874-020-01142-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!