Developing a culture of safety in biomedical research training.

Mol Biol Cell

National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20895.

Published: October 2020

The National Institute of General Medical Sciences (NIGMS) at the U.S. National Institutes of Health (NIH) is committed to supporting the safety of the nation's biomedical research and training environments. Institutional training grants affect many trainees and can have a broad influence across their parent institutions, making them good starting points for our initial efforts to promote the development and maintenance of robust cultures of safety at U.S. academic institutions. In this Perspective, we focus on laboratory safety, although many of the strategies we describe for improving laboratory safety are also applicable to other forms of safety including the prevention of harassment, intimidation, and discrimination. We frame the problem of laboratory safety using a number of recent examples of tragic accidents, highlight some of the lessons that have been learned from these and other events, discuss what NIGMS is doing to address problems related to laboratory safety, and outline steps that institutions can take to improve their safety cultures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851847PMC
http://dx.doi.org/10.1091/mbc.E20-03-0167DOI Listing

Publication Analysis

Top Keywords

laboratory safety
16
safety
9
biomedical training
8
developing culture
4
culture safety
4
safety biomedical
4
training national
4
national institute
4
institute general
4
general medical
4

Similar Publications

Quantitative Evaluation of Multiple Treatment Regimens for Treatment-Resistant Depression.

Int J Neuropsychopharmacol

January 2025

Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, China.

Objective: This study aims to quantitatively evaluate the efficacy and safety of various treatment regimens for treatment-resistant depression (TRD) across oral, intravenous, and intranasal routes to inform clinical guidelines.

Methods: A systematic review identified randomized controlled trials on TRD, with efficacy measured by changes in the Montgomery-Åsberg Depression Rating Scale (MADRS). We developed pharmacodynamic and covariate models for different administration routes, using Monte Carlo simulations to estimate efficacy distribution.

View Article and Find Full Text PDF

Introduction: Intensive research is dedicated to the development of novel biomaterials and medical devices to be used as grafts in reconstructive surgery, with the purpose of enhancing their therapeutic effectiveness, safety, and durability. A variety of biomaterials, from autologous bone to polymethylmetacrylate, polyether ether ketone, titanium, and calcium-based ceramics are used in cranioplasty. Porous hydroxyapatite (PHA) is reported as a possible material for bone reconstruction, with good signs of biocompatibility, osteoconductive and osteointegrative properties.

View Article and Find Full Text PDF

Multiple gene-deletion vaccinia virus Tiantan strain against mpox.

Virol J

January 2025

Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, People's Republic of China.

Monkeypox virus (MPXV) is an important zoonotic pathogenic virus, which poses serious threats to public health. MPXV infection can be prevented by immunization against the variola virus. Because of the safety risks and side effects of vaccination with live vaccinia virus (VACV) strain Tian Tan (VTT), we constructed two gene-deleted VTT recombinants (TTVAC7 and TTVC5).

View Article and Find Full Text PDF

Background: SHEN26 (ATV014) is an oral RNA-dependent RNA polymerase (RdRp) inhibitor with potential anti-SARS-CoV-2 activity. Safety, tolerability, and pharmacokinetic characteristics were verified in a Phase I study. This phase II study aimed to verify the efficacy and safety of SHEN26 in COVID-19 patients.

View Article and Find Full Text PDF

Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!