Inflammatory bowel disease (IBD) is a chronic intestinal inflammation that is highly prevalent worldwide. Interleukin (IL)-10 can effectively inhibit negative cascades such as the production of inflammatory mediators (inducible nitric oxide synthase [iNOS], cyclooxygenase-2), accumulation of inflammatory infiltrates (macrophages, eosinophils, neutrophils), toxicity (lower T cell subsets), and secretion of pro-inflammatory cytokines (IL-1, TNF-) in tissues such as the spleen, mesenteric lymph nodes (MLN), Peyer's patch (PP), and colon. In this study, we investigated whether chlorogenic acid (CHA) can regulate inflammation in IL-10 knockout (KO) mice used as an IBD animal model. CHA significantly increased the ratio of CD4/CD8, T cell subsets in PP, and MLN of IL-10 KO mice. In addition, CHA also morphologically attenuated colon inflammation in IL-10 KO mice. We demonstrated that CHA significantly reduced the expression levels of iNOS, IL-1, TNF-, which were highly expressed in IL-10 KO mice. Therefore, CHA may provide beneficial effects for improving IBD by decreasing inflammations.

Download full-text PDF

Source
http://dx.doi.org/10.1089/jmf.2019.4621DOI Listing

Publication Analysis

Top Keywords

il-10 mice
12
chlorogenic acid
8
inflammatory bowel
8
bowel disease
8
knockout mice
8
cell subsets
8
il-1 tnf-
8
inflammation il-10
8
mice
5
il-10
5

Similar Publications

Physical activity improves myocardial structure, function and resilience via complex, incompletely defined mechanisms. We explored effects of 1-2 wks swim training on cardiac and systemic phenotype in young male C57Bl/6 mice. Two wks forced swimming (90 min twice daily) resulted in cardiac hypertrophy (22% increase in heart:body weight, P<0.

View Article and Find Full Text PDF

To illustrate the potential of mesenchymal stem cell-derived exosomes (MSC-Exos) in mitigating septic lung injury by reducing the excessive formation of neutrophil extracellular traps (NETs), a mouse model of septic lung injury was induced through cecal ligation and puncture (CLP). The mice received intraperitoneal injections of MSC-Exos. Post injection, pathological alterations of the lung tissue were evaluated through HE staining, and the levels of inflammatory markers in each mouse group at various time points were assessed using ELISA kits.

View Article and Find Full Text PDF

Intranasal dantrolene nanoparticles abolished depression behavior and memory loss as a disease‐modifying drug in 5XFAD mice.

Alzheimers Dement

December 2024

Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A., Philadelphia, PA, USA

Background: The vicious cycle between depression and dementia increases the risk of Alzheimer’s Disease (AD) pathogenesis and pathology. This study investigates therapeutic effectiveness versus side effects and the underlying mechanisms of intranasal dantrolene nanoparticles (IDNs) to treat depression behavior and memory loss in 5XFAD mice.

Method: 5XFAD and wild‐type B6SJLF1/J mice were treated with IDNs (IDN, 5 mg/kg) in Ryanodex formulation for a duration of 12 weeks.

View Article and Find Full Text PDF

Intranasal lithium in Ryanodex formulation vehicle inhibits inflammation and pyroptosis in aged 5XFAD mice brains.

Alzheimers Dement

December 2024

Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A., Philadelphia, PA, USA

Background: This study investigates the therapeutic versus side effects of intranasal lithium chloride (LiCl) in Ryanodex formulation vehicle (RFV) to inhibit inflammation and pyroptosis and to ameliorate on cognitive dysfunction and depressive behavior in 5XFAD mice.

Method: 5XFAD and wild type (WT) B6SJLF1/J mice were treated with intranasal or oral LiCl (3 mM/kg) dissolved in RFV starting at 2 or 9 months old and the continuous treatment lasted for 12 weeks. Behavior was examined for depression, cognition, olfaction, and motor function at the ages of 5 or 12 months.

View Article and Find Full Text PDF

Modulating tumor-associated macrophages through CSF1R inhibition: a potential therapeutic strategy for HNSCC.

J Transl Med

January 2025

Department of General Surgery of Otorhinolaryngology Head and Neck, The Sixth Affiliated Hospital, Sun Yat-Sen University, No.26, Erheng Road, Yuancun, Tianhe District, Guangzhou, 510655, China.

Purpose: Tumor-associated macrophages (TAMs) are pivotal immune cells within the tumor microenvironment (TME), exhibiting dual roles across various cancer types. Depending on the context, TAMs can either suppress tumor progression and weaken drug sensitivity or facilitate tumor growth and drive therapeutic resistance. This study explores whether targeting TAMs can suppress the progression of head and neck squamous cell carcinoma (HNSCC) and improve the efficacy of chemotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!