We report the unconventional space-free confined growth of Au nanoshells with well-defined plasmonic properties and active tuning of their plasmon coupling by the nanoscale magnetic assembly. The seeded growth of Au exclusively occurred at the hard-soft interfaces between the FeO core and phenolic resin without the need of creating a limiting space, which represents a general and elegant approach to various core-shell nanostructures. The deformability of permeable phenolic layers plays an essential role in regulating the interfacial growth of Au nanoshells. While the polymer elasticity suppresses the radial deposition of Au atoms, their high deformability can afford enough spaces for the formation of conformal metallic shells. The coupled magnetic-plasmonic properties allow active tuning of the plasmon coupling and the resonant scattering of Au nanoshells by the magnetic assembly of the hybrid nanoparticles into plasmonic chains, whose potentials in applications have been demonstrated in designing transparent displays and anticounterfeiting devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.0c03350DOI Listing

Publication Analysis

Top Keywords

plasmon coupling
12
space-free confined
8
confined growth
8
growth nanoshells
8
active tuning
8
tuning plasmon
8
magnetic assembly
8
magnetically tunable
4
tunable plasmon
4
nanoshells
4

Similar Publications

Spectrochemical analysis of trace elements in complex matrices is crucial across various fields of science, industry, and technology. However, this analysis is often hindered by background interference and the challenge of detecting ultralow analyte concentrations. Surface Enhanced Infrared Absorption (SEIRA) spectroscopy is emerging as a viable technique to address these challenges as it can successfully reveal soluble and unmodified analytes in a label-free manner through their interactions with a bioreceptor following site-specific labeling with small infrared-active probes.

View Article and Find Full Text PDF

The cotton leafworm, Spodoptra littoralis, causes great damage to cotton crops. A new, safer method than insecticide is necessary for its control. Selenium nanoparticles (SeNPs) are metalloid nanomaterial, with extensive biological activities.

View Article and Find Full Text PDF

Magnetic field-induced synergistic therapy of cancer using magnetoplasmonic nanoplatform.

Mater Today Bio

February 2025

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.

Combining photothermal and chemotherapy using single nanoplatform is an emerging direction in cancer nanomedicine. Herein, a magnetic field (MF) induced combination of chemo/photothermal therapy is demonstrated using FeO@mSiO@Au core@shell@satellites nanoparticles (NPs) loaded with chemotherapeutic drug doxorubicin (DOX), both and An application of an external MF to the NPs dispersion causes magnetophoretic movement and aggregation of the NPs. While the synthesized NPs only slightly absorb light at ∼800 nm, their aggregation results in a significant near infrared (NIR) absorption associated with plasmon resonance coupling between the Au satellites in the NPs aggregates.

View Article and Find Full Text PDF

Enhanced Light-Matter Interaction with Bloch Surface Wave Modulated Plasmonic Nanocavities.

Nano Lett

January 2025

State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871 Beijing, China.

Article Synopsis
  • Strong coupling between nanocavities and single excitons at room temperature is crucial for studying cavity quantum electrodynamics, influenced by factors like light confinement and electric field orientation.
  • A hybrid cavity design combining a one-dimensional photonic crystal and plasmonic nanocavity enhances quality factor, minimizes mode volume, and allows control of electric field direction using Bloch surface waves.
  • Achieving a Rabi splitting of around 186 meV with only 8 excitons involved marks a significant advance, producing an effective coupling strength of 17.6 meV per exciton, which is nearly double the previously reported values for TMD-based systems.
View Article and Find Full Text PDF

Fiber Vector Light-Field-Based Tip-Enhanced Raman Spectroscopy.

Nano Lett

January 2025

Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.

Tip-enhanced Raman spectroscopy (TERS) has been extensively employed to investigate the light-matter interaction at the nanoscale. However, the current TERS strategies lack the ability to excite the low-background inhomogeneous electromagnetic field with significant enhancement of electric field, electric field gradient, and optomagnetic field, simultaneously. To overcome this, we developed a fiber vector light-field-based TERS strategy aimed at exploring the multipole Raman scattering processes of molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!