A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

How Does Nature Evade the "Larger is Weaker" Fate of Ultralong Silk β-Sheet Nanocrystallites. | LitMetric

Silk protein builds up one of the strongest fibers superior to most synthetic and natural polymers. However, the strengthening mechanisms of the silk proteins remain largely elusive because of their complex nanocomposite structures. Here, we report an unusual behavior of this kind of material that is distinctively different from those of metals and other polymers. We find that there are multiple interface microcracks nucleating and stacking under the shear loading, dividing the interchain interface into small segments, by which the silk protein can achieve a high strength even with the ultralong chains. This is a new strategy of microstructure design of soft matter that could avoid the "larger is weaker" fate due to the increase of the chain length. This novel mechanism is crucial for building strong polymer materials with long chain molecules and at the same time retaining their complex functional and structural properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.0c02968DOI Listing

Publication Analysis

Top Keywords

"larger weaker"
8
weaker" fate
8
silk protein
8
nature evade
4
evade "larger
4
fate ultralong
4
silk
4
ultralong silk
4
silk β-sheet
4
β-sheet nanocrystallites
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!