3D-Printed Bubble-Free Perfusion Cartridge System for Live-Cell Imaging.

Sensors (Basel)

Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.

Published: October 2020

The advent of 3D-printing technologies has had a significant effect on the development of medical and biological devices. Perfusion chambers are widely used for live-cell imaging in cell biology research; however, air-bubble invasion is a pervasive problem in perfusion systems. Although 3D printing allows the rapid fabrication of millifluidic and microfluidic devices with high resolution, little has been reported on 3D-printed fluidic devices with bubble trapping systems. Herein, we present a 3D-printed millifluidic cartridge system with bent and flat tapered flow channels for preventing air-bubble invasion, irrespective of bubble volume and without the need for additional bubble-removing devices. This system realizes bubble-free perfusion with a user-friendly interface and no-time-penalty manufacturing processes. We demonstrated the bubble removal capability of the cartridge by continually introducing air bubbles with different volumes during the calcium imaging of Sf21 cells expressing insect odorant receptors. Calcium imaging was conducted using a low-magnification objective lens to show the versatility of the cartridge for wide-area observation. We verified that the cartridge could be used as a chemical reaction chamber by conducting protein staining experiments. Our cartridge system is advantageous for a wide range of cell-based bioassays and bioanalytical studies, and can be easily integrated into portable biosensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7650622PMC
http://dx.doi.org/10.3390/s20205779DOI Listing

Publication Analysis

Top Keywords

cartridge system
12
bubble-free perfusion
8
live-cell imaging
8
air-bubble invasion
8
calcium imaging
8
cartridge
6
3d-printed bubble-free
4
perfusion
4
perfusion cartridge
4
system
4

Similar Publications

Ecosystems and environments are impacted by atmospheric pollution, which has significant effects on human health and climate. For these reasons, devices for developing portable and low-cost monitoring systems are required to assess human exposure during daily life. In the last decade, the advancements of 3D printing technology have pushed researchers to exploit, in different fields of applications, the advantages offered, such as rapid prototyping and low-cost replication of complex sample treatment devices.

View Article and Find Full Text PDF

Background: Pulmonary tuberculosis (PTB) accounts for 85% of all reported tuberculosis cases globally. Extrapulmonary involvement can occur in isolation or along with a pulmonary focus as in the case of patients with disseminated tuberculosis (TB). EPTB can occur through hematogenous, lymphatic, or localized bacillary dissemination from a primary source, such as PTB and affects the brain, eye, mouth, tongue, lymph nodes of neck, spine, bones, muscles, skin, pleura, pericardium, gastrointestinal, peritoneum and the genitourinary system as primary and/or disseminated disease.

View Article and Find Full Text PDF

UPLC-MS/MS High-Risk Screening for Sphingolipidoses Using Dried Urine Spots.

Biomolecules

December 2024

Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche-CHUS, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada.

Background: Early detection of sphingolipidoses is crucial to prevent irreversible complications and improve patient outcomes. The use of urine samples dried on filter paper (DUS) is a non-invasive strategy that simplifies the collection, storage, and shipping of samples compared to using liquid urine specimens.

Objectives: (1) Develop and validate a multiplex ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methodology using DUS to quantify twenty-one lysosphingolipids normalized to creatinine for eight different sphingolipidoses.

View Article and Find Full Text PDF

Phenylketonuria (PKU) is characterized by an autosomal recessive mutation in the phenylalanine hydroxylase (PAH) gene. Impaired PAH enzyme activity leads to the accumulation of phenylalanine (Phe) and its metabolites in the bloodstream, which disrupts the central nervous system and causes psychomotor retardation. Early diagnosis of PKU is essential for timely intervention.

View Article and Find Full Text PDF

Development of lateral flow immunochromatographic assay with Anti-Pythium insidiosum antibodies for point-of-care testing of vascular pythiosis.

Sci Rep

January 2025

Center of Excellence for Antimicrobial Resistance and Stewardship, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.

The pathogenic oomycete Pythium insidiosum causes a fatal infectious illness known as pythiosis, impacting humans and certain animals in numerous countries in the tropics and subtropics. Delayed diagnosis is a primary factor contributing to the heightened morbidity and mortality associated with the disease. Several new serodiagnostic methods have been developed to improve the identification of pythiosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!