Grape phylloxera is one of the most dangerous insect pests for worldwide viticulture. The leaf- and root-galling phylloxerid has been managed by grafting European grapevines onto American rootstock hybrids. Recent reports pinpoint the appearance of host-adapted biotypes, but information about the biomolecular characteristics underlying grape phylloxera biotypisation and its role in host performance is scarce. Using RNA-sequencing, we sequenced the transcriptome of two larval stages: L1 (probing) and L2-3 (feeding) larvae of two root-feeding grape phylloxera lineages feeding on the rootstock Teleki 5C (biotype C) and Riesling (biotype A). In total, 7501 differentially expressed genes (DEGs) were commonly modulated by the two biotypes. For the probing larvae, we found an increased number of DEGs functionally associated with insect chemoreception traits, such as odorant-binding proteins, chemosensory proteins, ionotropic, odorant, and gustatory receptors. The transcriptomic profile of feeding larvae was enriched with DEGs associated with the primary metabolism. Larvae feeding on the tolerant rootstock Teleki 5C exhibited higher numbers of plant defense suppression-associated DEGs than larvae feeding on the susceptible host. Based on the identified DEGs, we discuss their potential role for the compatible grape phylloxera- interaction belowground. This study was the first to compare the transcriptomes of two grape phylloxera lineages feeding on a tolerant and susceptible host, respectively, and to identify DEGs involved in the molecular interaction with these hosts. Our data provide a source for future studies on host adaptation mechanisms of grape phylloxera and help to elucidate grape phylloxera resistance further.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601026 | PMC |
http://dx.doi.org/10.3390/insects11100691 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!