Carbon Footprint of a Port Infrastructure from a Life Cycle Approach.

Int J Environ Res Public Health

Department of Civil Engineering, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Madrid, Spain.

Published: October 2020

One of the most important consequences caused by the constant development of human activity is the uncontrolled generation of greenhouse gases (GHG). The main gases (CO, CH, and NO) are illustrated by the carbon footprint. To determine the impact of port infrastructures, a Life Cycle Assessment approach is applied that considers construction and maintenance. A case study of a port infrastructure in Spain is analyzed. Main results reflect the continuous emission of GHG throughout the useful life of the infrastructure (25 years). Both machinery (85%) and materials (15%) are key elements influencing the obtained results (117,000 Tm CO2e).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599594PMC
http://dx.doi.org/10.3390/ijerph17207414DOI Listing

Publication Analysis

Top Keywords

carbon footprint
8
port infrastructure
8
life cycle
8
footprint port
4
infrastructure life
4
cycle approach
4
approach consequences
4
consequences caused
4
caused constant
4
constant development
4

Similar Publications

Urological diseases and their varied forms of management warrant special attention in the setting of climate change. Regarding urological cancers, climate change will probably increase the incidence and severity of cancer diagnoses through exposures to certain environmental risk factors, while simultaneously disrupting cancer care delivery and downstream outcomes. Regarding benign urological diseases, a burgeoning body of work exists on climate-related heat waves, dehydration, urolithiasis, renal injury and infectious and vector-borne diseases.

View Article and Find Full Text PDF

The development and implementation of county carbon control action plans in the Yellow River Basin (YRB) are crucial for realizing the "dual carbon" goals and modernizing national governance. Utilizing remote sensing data from 2001 to 2020, this study constructs a light-carbon conversion model and a carbon footprint model to simulate the carbon footprint of county energy consumption in the YRB. Employing spatial autocorrelation and spatial Durbin models, the study examines the temporal-spatial evolution characteristics and spatial effect mechanism.

View Article and Find Full Text PDF

Facilitated Channeling of Fixed Carbon and Energy into Chemicals in Artificial Phototrophic Communities.

J Am Chem Soc

January 2025

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China.

Light-driven CO biovalorization offers a promising route for coupling carbon mitigation with petrochemical replacement. Synthetic phototrophic communities that mimic lichens can reduce the metabolic burden with improved CO utilization. However, inefficient channeling of carbon and energy between species seriously hinders the collaborative CO-to-molecule route.

View Article and Find Full Text PDF

Understanding the electron pathway fluidity of Synechocystis in biophotovoltaics.

Plant J

January 2025

Systems Biotechnology Group, Department Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, 04318, Germany.

Biophotovoltaics offers a promising low-carbon footprint approach to utilize solar energy. It aims to couple natural oxygenic photosynthetic electrons to an external electron sink. This lays the foundation for a potentially high light-to-energy efficiency of the Biophotovoltaic process.

View Article and Find Full Text PDF

Climate change impacts the demand of the construction industry to reduce its carbon footprint while increasing the resilience of the buildings. This twofold need emphasises better understanding and cost prediction of green resilient buildings based on their 'resilience' and 'sustainability', which is very limited or based on obsolete perceptions and stereotypes. This study presents a novel index to predict the cost of converting a conventional building to a green-resilient building.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!