Silver is an important and efficient bactericide. Nanoscale silver has a large specific surface area, high target adhesion, strong permeability and high bactericidal activity. At present, the control of plant bacterial diseases is difficult, and the resistance of plant bacterial pathogens develops rapidly. Silver nanoparticles are expected to become a new generation of agrochemical to control plant bacterial diseases. In this study, a simple and green natural sunlight-induced method was used to prepare carboxymethylcellulose sodium-stabilized silver nanoparticles (CMC-SNs) with a particle size of around 13.53 ± 4.72 nm. CMC-SNs were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive spectrometry (EDS), X-ray diffraction (XRD) and UV-vis spectroscopy and found to be spherical and evenly dispersed. The bacteriostatic activity of the CMC-SNs toward pv. () was tested. The minimum inhibitory concentration (MIC) of CMC-SNs to was 1 mg/L, and the minimum bactericidal concentration (MBC) was 2 mg/L. In addition, the antibacterial mechanism was studied by scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM), which confirmed that the CMC-SNs had high antibacterial activity. In order to verify its impact on the environment, we conducted an acute toxicity test on zebrafish and found that Half lethal concentration (LC) > 100 mg/L in zebrafish, or no acute toxicity. The ability of CMC-SNs to control rice bacterial blight was verified by a pot experiment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600880 | PMC |
http://dx.doi.org/10.3390/nano10102007 | DOI Listing |
PLoS One
January 2025
Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.
Multidrug resistant bacteria are causing health problems and economic burden worldwide; alternative treatment options such as natural products and nanoparticles have attained great attention recently. Therefore, we aimed to determine the phytochemicals, antibacterial potential, and anticancer activity of W. unigemmata.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
Cotton textiles with persistent antibacterial qualities are crucial in halting the spread of bacteria and other infections. However, fugitive bacteria and drug-resistant pathogens have rendered tremendous challenges in the development of cotton fabrics with long-lasting antibacterial efficacy. The work aimed to innovatively propose a functional cotton fabric integrating intelligent bacteria-capturing and dual antibacterial properties for efficacious personal health management.
View Article and Find Full Text PDFMikrochim Acta
January 2025
College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China.
A AuNSs@PB@Ag-Apt surface-enhanced Raman scattering (SERS) probe has been developed by embedding Prussian blue (PB) between Au core and Ag shell. The PB SERS probe illustrates strong SERS activity in the Raman silent region of 2070 cm, and has a zero background signal, ensuring high sensitivity for the detection of Staphylococcus aureus (S. aureus).
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Plastics and Polymer Engineering, School of Engineering, Plastindia International University, Vapi-396193, Gujarat, India.
This study is to produce biogenic silver nanoparticles (AgNPs) by utilizing aqueous extracts derived from Turnera Sublata (TS) leaves under visible light. Subsequently, these nanoparticles are coated with eosin-yellow (EY) to enhance sensitivity and selectivity in L-3,4-dihydroxyphenylalanine (L-dopa) detection. This method encompasses the deposition of metal onto the Ag NPs, resulting in the formation of EY-AgNPs.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India.
In recent years, the increasing prevalence of viral infections such as dengue (DENV) and chikungunya (CHIKV) has emphasized the vital need for new diagnostic techniques that are not only quick and inexpensive but also suitable for point-of-care and home usage. Existing diagnostic procedures, while useful, sometimes have limits in terms of speed, mobility, and price, particularly in resource-constrained environments and during epidemics. To address these issues, this study proposes a novel technique that combines 3D printing technology with electrochemical biosensors to provide a highly sensitive, user-friendly, and customizable diagnostic platform.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!