Cardiac tissue surrogates show promise for restoring mechanical and electrical function in infarcted left ventricular (LV) myocardium. For these cardiac surrogates to be useful, they are required to support synchronous and forceful contraction over the infarcted region. These design requirements necessitate a thickness sufficient to produce a useful contractile force, an area large enough to cover an infarcted region, and prevascularization to overcome diffusion limitations. Attempts to meet these requirements have been hampered by diffusion limits of oxygen and nutrients (100-200 µm) leading to necrotic regions. This study demonstrates a novel layer-by-layer (LbL) fabrication method used to produce tissue surrogates that meet these requirements and mimic normal myocardium in form and function. Thick (1.5-2 mm) LbL cardiac tissues created from human induced pluripotent stem cell-derived cardiomyocytes and endothelial cells were assessed,, over a 4-week period for viability (<5.6 ± 1.4% nectrotic cells), cell morphology, viscoelastic properties and functionality. Viscoelastic properties of the cardiac surrogates were determined via stress relaxation response modeling and compared to native murine LV tissue. Viscoelastic characterization showed that the generalized Maxwell model of order 4 described the samples well (0.7 << 0.98). Functional performance assessment showed enhanced t-tubule network development, gap junction communication as well as conduction velocity (16.9 ± 2.3 cm s). These results demonstrate that LbL fabrication can be utilized successfully in creating complex, functional cardiac surrogates for potential therapeutic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8430447PMC
http://dx.doi.org/10.1088/1748-605X/abc107DOI Listing

Publication Analysis

Top Keywords

stem cell-derived
8
tissue surrogates
8
infarcted region
8
meet requirements
8
fabrication characterization
4
characterization thick
4
thick viable
4
viable bi-layered
4
bi-layered stem
4
cell-derived surrogate
4

Similar Publications

Nowadays, extracellular vesicles (EVs) such as exosomes participate in cell-cell communication and gain attention as a new approach for cell-free therapies. Recently, various studies have demonstrated the therapeutic ability of exosomes, while the biological effect of human endometrial stem cell (hEnSC)-derived small EVs such as exosomes is still unclear. Herein, we obtained small EVs from hEnSC and indicated that these small EVs activate the vital cell signaling pathway and progress neurite outgrowth in PC-12 cell lines.

View Article and Find Full Text PDF

Exosomes, cell-derived vesicles produced by cells, are fascinating and drawing growing interest in the field of biomedical exploration due to their exceptional properties. There is fascinating evidence that exosomes are involved in major biological processes, including diseases and regeneration. Exosomes from mesenchymal stem cells (MSCs) have shown promising outcomes in regenerative medicine.

View Article and Find Full Text PDF

Non-canonical roles of CFH in retinal pigment epithelial cells revealed by dysfunctional rare CFH variants.

Stem Cell Reports

December 2024

Department of Cardio Metabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany. Electronic address:

Complement factor H (CFH) common genetic variants have been associated with age-related macular degeneration (AMD). While most previous in vitro RPE studies focused on the common p.His402Tyr CFH variant, we characterized rare CFH variants that are highly penetrant for AMD using induced pluripotent stem-cell-derived retinal pigment epithelium (iPSC-RPE).

View Article and Find Full Text PDF

Pluripotent stem-cell-derived therapies in clinical trial: A 2025 update.

Cell Stem Cell

January 2025

Carpenter Consulting Corporation, Washington, USA. Electronic address:

Since the first derivation of human pluripotent stem cells (hPSCs) 27 years ago, technologies to control their differentiation and manufacturing have advanced immensely, enabling increasing numbers of clinical trials with hPSC-derived products. Here, we revew the landscape of interventional hPSC trials worldwide, highlighting available data on clinical safety and efficacy. As of December 2024, we identify 116 clinical trials with regulatory approval, testing 83 hPSC products.

View Article and Find Full Text PDF

A novel quantitative angiogenesis assay based on visualized vascular organoid.

Angiogenesis

January 2025

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing, 100191, China.

Angiogenesis describes the sprouting of blood vessels from existing vasculatures and it plays a pivotal role in disease progress such as diabetes, age-related macular degeneration and cancer. However, the most widely used anti-angiogenic agents targeting vascular endothelial growth factor (VEGF) pathway still lacked of specificity and therapeutic efficacy. To establish a method suitable for high-throughput drug screening and faithfully recapitulate the feature of in vivo angiogenesis, we generated a PECAM1-mRuby3-secNluc; ACTA2-EGFP dual reporter human pluripotent stem cell (hPSC) line and utilizing the cell line to establish a visualized and quantifiable in vitro angiogenesis model with stem cell-derived vascular organoid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!