Phasor analysis is a robust, nonfitting, method for the study of multiexponential decays in lifetime imaging data, routinely used in Fluorescence Lifetime Imaging Microscopy (FLIM) and only recently validated for Magnetic Resonance Imaging (MRI). In the established phasor approach, typically only the first Fourier harmonic is used to unravel time-domain exponential trends and their intercorrelations across image voxels. Here, we demonstrate the potential of -harmonics (FH) phasor analysis by using all frequency-domain data points in simulations and quantitative MRI (qMRI) T measurements of phantoms with bulk liquids or liquid-filled porous particles and of a human brain. We show that FH analysis, while of limited advantage in FLIM due to the correlated nature of shot noise, in MRI outperforms single-harmonic phasor in unravelling multiple physical environments and partial-volume effects otherwise undiscernible. We foresee application of FH phasor to, e.g., big-data analysis in qMRI of biological or other multiphase systems, where multiparameter fitting is unfeasible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649845PMC
http://dx.doi.org/10.1021/acs.jpclett.0c02319DOI Listing

Publication Analysis

Top Keywords

phasor analysis
12
magnetic resonance
8
resonance imaging
8
imaging data
8
lifetime imaging
8
analysis
5
phasor
5
full-harmonics phasor
4
analysis unravelling
4
unravelling multiexponential
4

Similar Publications

Towards measurements of absolute membrane potential in Bacillus subtilis using fluorescence lifetime.

Biophys Rep (N Y)

January 2025

UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA,; Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA,; Department of Physiology, University of California at Los Angeles, Los Angeles, CA 90095, USA,; California Nano Systems Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA,; Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.

Membrane potential (MP) changes can provide a simple readout of bacterial functional and metabolic state or stress levels. While several optical methods exist for measuring fast changes in MP in excitable cells, there is a dearth of such methods for absolute and precise measurements of steady-state membrane potentials (MPs) in bacterial cells. Conventional electrode-based methods for the measurement of MP are not suitable for calibrating optical methods in small bacterial cells.

View Article and Find Full Text PDF

Complex-valued neural networks process both amplitude and phase information, in contrast to conventional artificial neural networks, achieving additive capabilities in recognizing phase-sensitive data inherent in wave-related phenomena. The ever-increasing data capacity and network scale place substantial demands on underlying computing hardware. In parallel with the successes and extensive efforts made in electronics, optical neuromorphic hardware is promising to achieve ultra-high computing performances due to its inherent analog architecture and wide bandwidth.

View Article and Find Full Text PDF

Phasor-FSTM: a new paradigm for multicolor super-resolution imaging of living cells based on fluorescence modulation and lifetime multiplexing.

Light Sci Appl

January 2025

Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China.

Multicolor microscopy and super-resolution optical microscopy are two widely used techniques that greatly enhance the ability to distinguish and resolve structures in cellular imaging. These methods have individually transformed cellular imaging by allowing detailed visualization of cellular and subcellular structures, as well as organelle interactions. However, integrating multicolor and super-resolution microscopy into a single method remains challenging due to issues like spectral overlap, crosstalk, photobleaching, phototoxicity, and technical complexity.

View Article and Find Full Text PDF

A vehicle-to-grid (V2G) technology enables bidirectional power exchange between electric vehicles (EVs) and the power grid, presenting enhanced grid stability and load management opportunities. This study investigates a comprehensive microgrid system integrating EVs with solar (8 MW), wind (4.5 MW), and diesel generation sources, focusing on peak load reduction and frequency regulation capabilities.

View Article and Find Full Text PDF

Monitoring Macrophage Polarization with Gene Expression Reporters and Bioluminescence Phasor Analysis.

Chem Biomed Imaging

November 2024

Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, Irvine, California 92617, United States.

Article Synopsis
  • Macrophages can behave in two main ways when activated: inflammatory (M1) or anti-inflammatory (M2), and tracking these behaviors is important for understanding immune function.
  • Current methods for monitoring macrophage polarization are either static or not suitable for complex environments, so the researchers developed a new approach using genetically engineered luciferase reporters.
  • Their method allows for long-term observation of macrophage types in both 2D and 3D formats with high resolution, paving the way for better monitoring of immune cells and other complex biological networks.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!