Phase aberrations induced by heterogeneities in body wall tissues introduce a shift and broadening of the high-intensity focused ultrasound (HIFU) focus, associated with decreased focal intensity. This effect is particularly detrimental for HIFU therapies that rely on shock front formation at the focus, such as boiling histotripsy (BH). In this article, an aberration correction method based on the backscattering of nonlinear ultrasound pulses from the focus is proposed and evaluated in tissue-mimicking phantoms. A custom BH system comprising a 1.5-MHz 256-element array connected to a Verasonics V1 engine was used as a pulse/echo probe. Pulse inversion imaging was implemented to visualize the second harmonic of the backscattered signal from the focus inside a phantom when propagating through an aberrating layer. Phase correction for each array element was derived from an aberration-correction method for ultrasound imaging that combines both the beamsum and the nearest neighbor correlation method and adapted it to the unique configuration of the array. The results were confirmed by replacing the target tissue with a fiber-optic hydrophone. Comparing the shock amplitude before and after phase-aberration correction showed that the majority of losses due to tissue heterogeneity were compensated, enabling fully developed shocks to be generated while focusing through aberrating layers. The feasibility of using a HIFU phased-array transducer as a pulse-echo probe in harmonic imaging mode to correct for phase aberrations was demonstrated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8476183 | PMC |
http://dx.doi.org/10.1109/TUFFC.2020.3030890 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!