Diboron-Catalyzed Regio- and 1,2--α-Stereoselective Glycosylation of -1,2-Diols.

J Org Chem

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.

Published: December 2020

AI Article Synopsis

Article Abstract

Regio- and 1,2--α-stereoselective glycosylations were investigated using 1,2-anhydroglucose donors and -1,2-diol sugar acceptors in the presence of a diboron catalyst. The reactions proceeded smoothly to provide the corresponding 1,2--α-glycosides with consistently very high stereoselectivity and were regioselectivity controlled by the protecting groups of the acceptor. The present glycosylation method was applied successfully to the efficient synthesis of α-1,3-glucan pentasaccharide.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.0c02093DOI Listing

Publication Analysis

Top Keywords

regio- 12--α-stereoselective
8
diboron-catalyzed regio-
4
12--α-stereoselective glycosylation
4
glycosylation -12-diols
4
-12-diols regio-
4
12--α-stereoselective glycosylations
4
glycosylations investigated
4
investigated 12-anhydroglucose
4
12-anhydroglucose donors
4
donors -12-diol
4

Similar Publications

The Lewis acid-catalyzed coupling of alkenes and aldehydes presents a modern, versatile synthetic alternative to classical carbonyl addition chemistry, offering exceptional regio- and stereoselectivity. In this work, we present a comprehensive computational investigation into the reaction mechanism of this transformation. Our findings confirm the occurrence of an enantioselective trans-annular [1,5]-hydride shift step and demonstrate that the enantioselectivity of the reaction arises predominantly from steric clashes between functional groups in the cyclization step.

View Article and Find Full Text PDF

Poly(lactic-co-glycolic acid) (PLGA) has been widely employed for various biomedical applications owing to its biodegradability and biocompatibility. The discovery of the stereocomplex formation between enantiomeric alternating PLGA pairs underscored its potential as high-performance biodegradable materials with diverse material properties and biodegradability. Herein, we have established a regio- and stereoselective ring-opening polymerization approach for the synthesis of stereocomplexed isoenriched alternating PLGA from racemic methyl-glycolide (rac-MG).

View Article and Find Full Text PDF

Palladium-catalysed asymmetric cascade transformations of 4-alken-2-ynyl carbonates to construct complex frameworks.

Chem Sci

December 2024

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609.

As a class of readily available and multifunctional building blocks, the chemistry of 4-alken-2-ynyl carbonates remains to be explored. Presented herein is a palladium-catalysed cascade transformative reaction between 4-alken-2-ynyl carbonates and -functionalised activated alkenes. Achiral 1,1-bisalkyl-4-alken-2-ynyl carbonates undergo highly regioselective propargylic substitution with -hydroxyphenyl-tethered activated alkenes, and an auto-tandem vinylogous addition, unusual central-carbon Tsuji-Trost alkylation, protonation and β-H elimination process is followed to furnish fused and spirocyclic frameworks with high structural complexity.

View Article and Find Full Text PDF

Site-Specific Competitive Kinase Inhibitor Target Profiling Using Phosphonate Affinity Tags.

Mol Cell Proteomics

January 2025

Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands. Electronic address:

Protein kinases are prime targets for drug development due to their involvement in various cancers. However, selective inhibition of kinases, while avoiding off-target effects remains a significant challenge for the development of protein kinase inhibitors. Activity-based protein profiling (ABPP), in combination with pan-kinase activity-based probes (ABPs) and mass spectrometry-based proteomics, enables the identification of kinase drug targets.

View Article and Find Full Text PDF

Enantioselective construction of silicon-stereogenic vinylsilanes from simple alkenes.

Nat Commun

January 2025

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University 94 Weijin Road, Tianjin, China.

The diverse utility of acyclic vinylsilanes has driven the interest in the synthesis of enantioenriched vinylsilanes bearing a Si-stereogenic center. However, the predominant approaches for catalytic asymmetric generation of Si-stereogenic vinylsilanes have mainly relied on transition metal-catalyzed reactions of alkynes with different silicon sources. Here we successfully realize the enantioselective synthesis of linear silicon-stereogenic vinylsilanes with good yields and enantiomeric ratios from simple alkenes under rhodium catalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!