The unparalleled ability of DNA to recognize its complementary strand through Watson and Crick base pairing is one of the most reliable molecular recognition events found in natural systems. This highly specific sequence information encoded in DNA enables it to be a versatile building block for bottom-up self-assembly. Hence, the decoration of functional nanostructures with information-rich DNA is extremely important as this allows the integration of other functional molecules onto the surface of the nanostructures through DNA hybridization in a highly predictable manner. DNA amphiphiles are a class of molecular hybrids where a short hydrophilic DNA is conjugated to a hydrophobic moiety. Since DNA amphiphiles comprise DNA as the hydrophilic segment, their self-assembly in aqueous medium always results in the formation of nanostructures with shell made of DNA. This clearly suggests that self-assembly of DNA amphiphiles is a straightforward strategy for the ultradense decoration of a nanostructure with DNA. However, initial attempts toward the design of DNA amphiphiles were primarily focused on long flexible hydrocarbon chains as the hydrophobic moiety, and it has been demonstrated in several examples that they typically self-assemble into DNA-decorated micelles (spherical or cylindrical). Hence, molecular level control over the self-assembly of DNA amphiphiles and achieving diverse morphologies was extremely challenging and unrealized until recently.In this Account, we summarize our recent efforts in the area of self-assembly of DNA amphiphiles and narrate the remarkable effect of the incorporation of a large π-surface as the hydrophobic domain in the self-assembly of DNA amphiphiles. Self-assembly of DNA amphiphiles with flexible hydrocarbon chains as the hydrophobic moiety is primarily driven by the hydrophobic effect. The morphology of such nanostructures is typically predicted based on the volume ratio of hydrophobic to hydrophilic segments. However, control over the self-assembly and prediction of the morphology become increasingly challenging when the hydrophobic moieties can interact with each other through other noncovalent interactions. In this Account, the unique self-assembly behaviors of DNA-π amphiphiles, where a large π-surface acts as the hydrophobe, are described. Due to the extremely strong π-π stacking in aqueous medium, the assembly of the amphiphile is found to preferably proceed in a lamellar fashion (bilayer) and hence the morphology of the nanostructures can easily be tuned by the structural modification of the π-surface. Design principles for crafting various DNA-decorated lamellar nanostructures including unilamellar vesicles, two-dimensional (2D) nanosheets, and helically twisted nanoribbons by selecting suitable π-surfaces are discussed. Unilamellar vesicular nanostructures were achieved by using linear oligo(phenylene ethynylene) (OPE) as the hydrophobic segment, where lamellar assembly undergoes folding to form unilamellar vesicles. The replacement of OPE with a strongly π-stacking hydrophobe such as hexabenzocoronene (HBC) or tetraphenylethylene (TPE) provides extremely strong π-stacking compared to OPE, which efficiently directed the 2D growth for the lamellar assembly and led to the formation of 2D nanosheets. A helical twist in the lamella was achieved by the replacement of HBC with hexaphenylbenzene (HPB), which is the twisted analogue of HBC, directing the assembly into helically twisted nanoribbons. The most beneficial structural feature of this kind of nanostructure is the extremely dense decoration of their surface with ssDNA, which can further be used for DNA-directed organization of other functional nanomaterials. By exploring this, their potential as a nanoscaffold for predefined assembly of plasmonic nanomaterials into various plasmonic 1D, 2D, and 3D nanostructures through DNA hybridization is discussed. Moreover, the design of pH-responsive DNA-based vesicles and their application as a nanocarrier for payload delivery is also demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.0c00492DOI Listing

Publication Analysis

Top Keywords

dna amphiphiles
32
self-assembly dna
20
dna
17
hydrophobic moiety
12
nanostructures
9
self-assembly
9
amphiphiles
9
dna-π amphiphiles
8
building block
8
crafting dna-decorated
8

Similar Publications

Oligonucleotide therapeutics, including antisense oligonucleotides and small interfering RNA, offer promising avenues for modulating the expression of disease-associated proteins. However, challenges such as nuclease degradation, poor cellular uptake, and unspecific targeting hinder their application. To overcome these obstacles, spherical nucleic acids have emerged as versatile tools for nucleic acid delivery in biomedical applications.

View Article and Find Full Text PDF

This perspective begins with an overview of the major impact that the dendron, dendrimer, and dendritic state (DDDS) discovery has made on traditional polymer science. The entire DDDS technology is underpinned by an unprecedented new polymerization strategy referred to as step-growth, amplification-controlled polymerization (SGACP). This new SGACP paradigm allows for routine polymerization of common monomers and organic materials into precise monodispersed, dendritic macromolecules (i.

View Article and Find Full Text PDF

Amphiphilic dimeric cyanostilbenes with two donor-acceptor moieties connected through variable aliphatic linkers displayed aggregation in aqueous media to produce red emissive nano-assemblies. In the presence of anionic biopolymers such as ctDNA and heparin, they formed electrostatically driven co-assemblies with enhanced luminescence. Moreover, due to the chiral nature of the bio-templates DNA and heparin, the co-assemblies demonstrated induced chirality features.

View Article and Find Full Text PDF

Reconfigurable Amphiphilic DNA Nanotweezer for Targeted Delivery of Therapeutic Oligonucleotides.

ACS Cent Sci

December 2024

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, FuRong Laboratory, College of Biology, Hunan University, Changsha, Hunan 410082, China.

Amphiphilic lipid oligonucleotide conjugates are powerful molecular-engineering materials that have been used for delivery of therapeutic oligonucleotides. However, conventional lipid oligonucleotide conjugates suffer from poor selectivity to target cells due to the nonspecific interaction between lipid tails and cell membranes. Herein, a reconfigurable DNA nanotweezer consisting of a c-Met aptamer and bischolesterol-modified antisense oligonucleotide was designed for c-Met-targeted delivery of therapeutic antisense oligonucleotides.

View Article and Find Full Text PDF

Fluorinated chitosan mediated transepithelial delivery of sanguinarine-loaded platinum (IV) prodrug for intravesical instillation therapy of muscle-invasive bladder cancer.

J Control Release

December 2024

Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, China; Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China. Electronic address:

Cisplatin-based neoadjuvant chemotherapy is first-line strategy to inhibit progression and metastasis of muscle-invasive bladder cancer (MIBC). However, its clinical efficacy is often limited by drug resistance and severe systemic side effects, highlighting the urgent need for innovative therapeutic approaches. Despite advancements in cisplatin-based regimens, research on intravesical cisplatin delivery systems remains scarce.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!