Reactive molecular dynamics simulation of thermal decomposition for nitromethane/nano-aluminum composites.

J Mol Model

Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.

Published: October 2020

The thermal decomposition of pure nitromethane (NM) and NM/nano-aluminum (Al) composites was simulated by reactive molecular dynamics with ReaxFF-lg corrected force field parameters. The initial decomposition pathway of NM molecules in pure NM is C-N bond rupture. However, NM is decomposed early by the initial pathway of N-O bond rupture when it mixes with nano-Al because of the strong attraction of Al to O. The decomposition process of NM/nano-Al can be divided into three stages: adsorption, slow decomposition, and rapid decomposition. The addition of nano-Al particles decreases the energy barrier in decomposition, increases the released energy, and reduces the decomposition temperature of NM. Adding 3% Al to the explosive can make the detonation pressure 3.083% higher than that of pure system. Compared with pure NM, the energy barrier of 16% Al composite is 25.63 kcal/mol lower and the energy released is 22.99 kcal/mol more. There is an optimal amount of Al contents being added to the NM composite by which the largest total numbers of gaseous products (N, HO, and CO) are released. The effect of Al additives on CO production is the most obvious. The maximum detonation pressure can be achieved by adding an appropriate amount of nano-Al, which is similar to the experimental results. Graphical abstract.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-020-04562-7DOI Listing

Publication Analysis

Top Keywords

reactive molecular
8
molecular dynamics
8
decomposition
8
thermal decomposition
8
bond rupture
8
energy barrier
8
detonation pressure
8
dynamics simulation
4
simulation thermal
4
decomposition nitromethane/nano-aluminum
4

Similar Publications

Investigation of Transformation Pathways of Polyfluoroalkyl Substances during Chlorine Disinfection.

Environ Sci Technol

January 2025

Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States.

Recent regulations on perfluorinated compounds in drinking water underscore the need for a deeper understanding of the formation of perfluorinated compounds from polyfluoroalkyl substances during chlorine disinfection. Among the compounds investigated in this study, N-(3-(dimethylaminopropan-1-yl)perfluoro-1-hexanesulfonamide (N-AP-FHxSA) underwent rapid transformation during chlorination. Within an hour, it produced quantitative yields of various poly- and per-fluorinated products, including perfluorohexanoic acid (PFHxA).

View Article and Find Full Text PDF

Photodynamic therapy (PDT) and photothermal therapy (PTT) have emerged as promising treatment options, showcasing immense potential in addressing both oncologic and nononcologic diseases. Single-component organic phototherapeutic agents (SCOPAs) offer advantages compared to inorganic or multicomponent nanomedicine, including better biosafety, lower toxicity, simpler synthesis, and enhanced reproducibility. Nonetheless, how to further improve the therapeutic effectiveness of SCOPAs remains a challenging research area.

View Article and Find Full Text PDF

Convertible Hydrogel Injection Sequentially Regulates Diabetic Periodontitis.

ACS Biomater Sci Eng

January 2025

Chongqing Key Laboratory of Reproductive Health and Digital Medicine, Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China.

Diabetes exacerbates periodontitis by overexpressing reactive oxygen species (ROS), which leads to periodontal bone resorption. Consequently, it is imperative to relieve inflammation and promote alveolar bone regeneration comprehensively for the development of diabetic periodontal treatment strategies. Furthermore, an orderly treatment to avoid interference between these two processes can achieve the optimal therapeutic effect.

View Article and Find Full Text PDF

Fatty acid binding proteins (FABPs) are a class of small molecular mass intracellular lipid chaperone proteins that bind to hydrophobic ligands, such as long-chain fatty acids. FABP5 expression was significantly upregulated in the N-methyl-d-aspartic acid (NMDA) model, the microbead-induced chronic glaucoma model, and the DBA/2J mice. Previous studies have demonstrated that FABP5 can mediate mitochondrial dysfunction and oxidative stress in ischemic neurons, but the role of FABP5 in oxidative stress and cell death in retina NMDA injury models is unclear.

View Article and Find Full Text PDF

Esophageal carcinoma is a highly prevalent malignancy worldwide. The present study aimed to investigate the mechanism by which the natural compound coptisine affects pyroptosis in esophageal squamous cell carcinoma (ESCC). The expression of c-Met in ESCC patients was assessed by immunohistochemical analysis of tissue microarrays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!