It is known that, although the level of light is the primary determinant of pupil size, cognitive factors can also affect pupil diameter. It has been demonstrated that photographs of the sun produce pupil constriction independently of their luminance and other low-level features, suggesting that high-level visual processing may also modulate pupil response. Here, we measure pupil response to artistic paintings of the sun, moon, or containing a uniform lighting, that, being mediated by the artist's interpretation of reality and his technical rendering, require an even higher level of interpretation compared with photographs. We also study how chromatic content and spatial layout affect the results by presenting grey-scale and inverted versions of each painting. Finally, we assess directly with a categorization test how subjective image interpretation affects pupil response. We find that paintings with the sun elicit a smaller pupil size than paintings with the moon, or paintings containing no visible light source. The effect produced by sun paintings is reduced by disrupting contextual information, such as by removing color or manipulating the relations between paintings features that make more difficult to identify the source of light. Finally, and more importantly, pupil diameter changes according to observers' interpretation of the scene represented in the same stimulus. In conclusion, results show that the subcortical pupillary response to light is modulated by subjective interpretation of luminous objects, suggesting the involvement of cortical systems in charge of cognitive processes, such as attention, object recognition, familiarity, memory, and imagination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571318 | PMC |
http://dx.doi.org/10.1167/jov.20.10.14 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!