PB28, a cyclohexylpiperazine derivative, could be a potential strategy for Covid 19 because in a recent study it has been found more active than hydroxychloroquine without interaction with cardiac proteins. PB28 has been designed, developed, and biologically evaluated in the past decade in our research group. A possible mechanism to explain its surprising anti-COVID-19 activity is suggested..

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7437449PMC
http://dx.doi.org/10.1021/acsmedchemlett.0c00271DOI Listing

Publication Analysis

Top Keywords

pb28 covid
4
covid 2019
4
2019 game
4
game changer?
4
changer? pb28
4
pb28 cyclohexylpiperazine
4
cyclohexylpiperazine derivative
4
derivative potential
4
potential strategy
4
strategy covid
4

Similar Publications

Article Synopsis
  • Developing effective drugs for coronavirus infections is challenging, but recent findings highlight the sigma-1 receptor (S1R) as a promising target for antiviral treatments against SARS-CoV-1 and SARS-CoV-2.
  • The S1R antagonist PB28 shows strong antiviral effects against SARS-CoV-2, and researchers developed modified versions of PB28, discovering one that is four times more effective.
  • By using advanced modeling techniques, the study explores how S1R interactions with specific compounds may lead to enhanced antiviral activity, paving the way for designing new drugs targeting S1R for better virus treatment.
View Article and Find Full Text PDF

Recent advances in drug repurposing using machine learning.

Curr Opin Chem Biol

December 2021

Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA. Electronic address:

Drug repurposing aims to find new uses for already existing and approved drugs. We now provide a brief overview of recent developments in drug repurposing using machine learning alongside other computational approaches for comparison. We also highlight several applications for cancer using kinase inhibitors, Alzheimer's disease as well as COVID-19.

View Article and Find Full Text PDF

These unprecedented times have forced the scientific community to gather to face the COVID-19 pandemic. Efforts in diverse directions have been made. A multi-university team has focused on the identification of the host (human) proteins interacting with SARS-CoV-2 viral proteins, with the aim of hampering these interactions that may cause severe COVID-19 symptoms.

View Article and Find Full Text PDF

PB28, a cyclohexylpiperazine derivative, could be a potential strategy for Covid 19 because in a recent study it has been found more active than hydroxychloroquine without interaction with cardiac proteins. PB28 has been designed, developed, and biologically evaluated in the past decade in our research group. A possible mechanism to explain its surprising anti-COVID-19 activity is suggested.

View Article and Find Full Text PDF

On-target versus off-target effects of drugs inhibiting the replication of SARS-CoV-2.

Cell Death Dis

August 2020

Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.

The current epidemic of coronavirus disease-19 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) calls for the development of inhibitors of viral replication. Here, we performed a bioinformatic analysis of published and purported SARS-CoV-2 antivirals including imatinib mesylate that we found to suppress SARS-CoV-2 replication on Vero E6 cells and that, according to the published literature on other coronaviruses is likely to act on-target, as a tyrosine kinase inhibitor. We identified a cluster of SARS-CoV-2 antivirals with characteristics of lysosomotropic agents, meaning that they are lipophilic weak bases capable of penetrating into cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!