Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Antibacterial coating is rapidly emerging as a pivotal strategy for mitigating spread of bacterial pathogens. However, many challenges still need to be overcome in order to develop a smart coating that can achieve on-demand antibacterial effects. In this study, a Staphylococcus aureus (S. aureus) sensitive peptide sequence is designed, and an antibiotic is then conjugated with this tailor-made peptide. The antibiotic-peptide conjugate is then linked to the surface of a titanium implant, where the peptide can be recognized and cleaved by an enzyme secreted by S. aureus. This allows for the release of antibiotics in the presence of S. aureus, thus achieving delivery of an antibacterial specifically when an infection occurs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mabi.202000194 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!