Venoms are a rich source of highly specific toxins, which allow the identification of novel therapeutic targets. We have now applied high content screening (HCS) microscopy to identify toxins that modulate pain sensitization signaling in primary sensory neurons of rat and elucidated the underlying mechanism. A set of venoms and fractions thereof were analyzed for their ability to activate type II protein kinase A (PKA-II) and extracellular signal-regulated kinases (ERK1/2). We identified MeuNaTxα-1, a sodium channel-selective scorpion α-toxin from Mesobuthus eupeus, which affected both PKA-II and ERK1/2. Recombinant MeuNaTxα-1 showed identical activity to the native toxin on mammalian voltage-gated sodium channels expressed in Xenopus laevis oocytes and induced thermal hyperalgesia in adult mice. The effect of MeuNaTxα-1 on sensory neurons was dose-dependent and tetrodotoxin-sensitive. Application of inhibitors and toxin mutants with altered sodium channel selectivity demonstrated that signaling activation in sensory neurons depends on Na 1.2 isoform. Accordingly, the toxin was more potent in neurons from newborn rats, where Na 1.2 is expressed at a higher level. Our results demonstrate that HCS microscopy-based monitoring of intracellular signaling is a novel and powerful tool to identify and characterize venoms and their toxins affecting sensory neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.15593DOI Listing

Publication Analysis

Top Keywords

sensory neurons
16
voltage-gated sodium
8
sodium channels
8
neurons
5
scorpion toxin
4
meunatxα-1
4
toxin meunatxα-1
4
meunatxα-1 sensitizes
4
sensitizes primary
4
primary nociceptors
4

Similar Publications

Brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) are known to contribute to both protective and pronociceptive processes. However, their contribution to neuropathic pain after spinal cord injury (SCI) needs further investigation. In a recent study utilizing TrkB mice, it was shown that systemic pharmacogenetic inhibition of TrkB signaling with 1NM-PP1 (1NMP) immediately after SCI delayed the onset of pain hypersensitivity, implicating maladaptive TrkB signaling in pain after SCI.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.

Background: Glaucoma is characterized by progressive optic nerve degeneration that results in irreversible blindness, and it can be considered a neurodegenerative disorder of both the eye and the brain. Increasing evidence suggest that glaucoma shares some common neurodegenerative pathways with Frontotemporal Lobar Degeneration (FTLD), Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Disease (AD) among others. Interestingly, a recent study revealed the presence of abnormal TAR DNA-binding protein 43 (TDP-43) inclusions and aggregates in retinal ganglion cells and other retinal cell types in FTLD-TDP patients; however, the significance of this pathology and its impact on retinal function and optical nerve integrity is unknown.

View Article and Find Full Text PDF

Background: Chronic stress promotes life-long risk for neuropsychiatric decline by increasing neuroinflammation and disrupting synaptic health and plasticity. Our lab and others have recently demonstrated that non-invasive gamma sensory stimulation (flicker) modulates immune signaling, restores microglial function, and improves cognitive performance in mouse models of Alzheimer's disease (AD). However, no research to date has studied the effects of flicker in the context of stress.

View Article and Find Full Text PDF

Neurons in the central nervous system (CNS) lose regenerative potential with maturity, leading to minimal corticospinal tract (CST) axon regrowth after spinal cord injury (SCI). In young rodents, knockdown of PTEN, which antagonises PI3K signalling by hydrolysing PIP3, promotes axon regeneration following SCI. However, this effect diminishes in adults, potentially due to lower PI3K activation leading to reduced PIP3.

View Article and Find Full Text PDF

Background: The aim of the present study was to compare the rates of change in Ganglion Cell- Inner Plexiform Layer (GCIPL) and Retinal Nerve Fiber Layer (RNFL) thickness, as measured by Optical Coherence Tomography (OCT) Guided Progression Analysis (GPA) program in control group, Primary Open Angle Glaucoma (POAG) and Pseudoexfoliation Glaucoma (PXG) eyes.

Methods: 60 POAG and 60 PXG patients and 30 control group patients were included in the study. Patients diagnosed with glaucoma were divided into two groups as mild (Mean deviation (MD) > -6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!