Objective: Macrophages exhibit distinct phenotypes and are dysregulated in a model of iatrogenic laryngotracheal stenosis (iLTS). Increased populations of alternatively activated or M2 macrophages have been demonstrated. However, the role of these macrophages is unknown. The aims of this study are: 1) define the macrophage population in iLTS in the context of classically activated or M1 and M2 macrophage phenotypes, and 2) characterize the effect of monocyte-derived M1 and M2 macrophages on normal airway and LTS-derived fibroblasts (FBs) in vitro.
Study Design: Comparative analysis; in vitro controlled study.
Methods: Immunohistochemical analysis of human iLTS and control specimens was performed to define the macrophage population. In vitro, M1, and M2 macrophages were polarized using M-CSF + Interferon-gamma and lipopolysaccharide or Interleukin-4, respectively. FBs isolated from laryngotracheal scar (LTS-FBs) and normal tracheal airway (NA-FBs) in eight patients with iLTS were cocultured with polarized macrophages. Fibrosis gene expression, soluble collagen production, and proliferation were assessed.
Results: Immunohistochemical analysis revealed increased CD11b + cells (macrophage marker) in laryngotracheal scar specimens (18.3% vs. 8.5%, P = .03) and predominant CD206 (M2) costaining versus CD86 (M1) (51.5% vs. 9.8%, n = 10, P = .001). In vitro, NA-FBs cultured with M2 macrophages demonstrated a 2.41-fold increase in collagen-1 expression (P = .05, n = 8) and an increase in soluble collagen (9.98 vs. 8.875, mean difference: 1.11 95%, confidence interval 0.024-2.192, n = 8, P = .015).
Conclusion: Increased populations of CD11b cells are present in iLTS specimens and are predominantly CD206+, indicating an M2 phenotype. In vitro, M2 macrophages promoted collagen expression in airway FBs. Targeting macrophages may represent a therapeutic strategy for attenuating fibrosis in iLTS.
Level Of Evidence: NA Laryngoscope, 131:E346-E353, 2021.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844402 | PMC |
http://dx.doi.org/10.1002/lary.28980 | DOI Listing |
ACS Nano
January 2025
Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China.
Methicillin-resistant (MRSA) causes osteomyelitis (OM), which seriously threatens public health due to its antimicrobial resistance. To increase the sensitivity of antibiotics and eradicate intracellular bacteria, a Zn and vancomycin (Van) codelivered nanotherapeutic (named Man-Zn/Van NPs) was fabricated and characterized via mannose (Man) modification. Man-Zn/Van NPs exhibit significant inhibitory activity against extra- and intracellular MRSA and obviously decrease the minimum inhibitory concentration of Van.
View Article and Find Full Text PDFCirc Res
January 2025
Burke Neurological Institute, White Plains, NY (H.J., I.P., K.W.P., J.M., A.M., S.C.).
Background: Remote ischemic conditioning (RIC) has been implicated in cross-organ protection in cerebrovascular disease, including stroke. However, the lack of a consensus protocol and controversy over the clinical therapeutic outcomes of RIC suggest an inadequate mechanistic understanding of RIC. The current study identifies RIC-induced molecular and cellular events in the blood, which enhance long-term functional recovery in experimental cerebral ischemia.
View Article and Find Full Text PDFF1000Res
January 2025
Immunology, University of Toronto, Toronto, Ontario, Canada.
Fibroblasts, non-hematopoietic cells of mesenchymal origin, are tissue architects which regulate the topography of tissues, dictate tissue resident cell types, and drive fibrotic disease. Fibroblasts regulate the composition of the extracellular matrix (ECM), a 3-dimensional network of macromolecules that comprise the acellular milieu of tissues. Fibroblasts can directly and indirectly regulate immune responses by secreting ECM and ECM-bound molecules to shape tissue structure and influence organ function.
View Article and Find Full Text PDFMediators Inflamm
January 2025
Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia.
L. fruits and leaf extracts have a broad range of immunomodulatory, anti-inflammatory, and antioxidant effects; however, their effects on cardiac protection have not been investigated. The study aims to test the biological activity of L.
View Article and Find Full Text PDFRegen Biomater
December 2024
Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
During the implantation process of cardiovascular implants, vascular damage caused by inflammation occurs, and the inflammatory process is accompanied by oxidative stress. Currently, carbon monoxide (CO) has been demonstrated to exhibit various biological effects including vasodilatation, antithrombotic, anti-inflammatory, apoptosis-inducing and antiproliferative properties. In this study, hemoglobin/epigallocatechin-3-gallate (EGCG) core-shell nanoparticle-containing coating on stainless steel was prepared for CO loading and inflammation modulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!