The risk of left ventricular (LV) and right ventricular (RV) maladaptation after surgery for isolated primary mitral regurgitation (PMR) is poorly defined. We aimed to evaluate LV and RV contractile function using speckle-tracking analysis alongside with quantification of exercise tolerance in patients with PMR after mitral valve surgery. All consecutive patients with symptomatic PMR undergoing mitral valve surgery between July 2015 and May 2017 were prospectively enrolled. Sequential echocardiographic studies along with clinical assessment were performed before and three months after surgery. Mean age in 138 patients was 65.8 ± 12.7 years, 48.2% (66) of whom were female. Mean LV ejection fraction decreased from 57 ± 12% to 50 ± 11% (p < 0.001), LV global longitudinal strain deteriorated from -19.2 ± 4.1% to -15.7 ± 3.8% (p < 0.001), and mechanical strain dispersion increased from 88 ± 12 to 117 ± 115 ms (p = 0.004). There was a reduction in tricuspid annulus plane systolic excursion from 22 ± 5 mm to 18 ± 4 mm (p < 0.001), as well as a slight deterioration of RV free wall mean longitudinal strain from -16.9 ± 5.6% to -15.7 ± 4.1% (p = 0.05). The rate of moderate to severe tricuspid regurgitation significantly decreased (p < 0.005). Regarding exercise tolerance, the New York Heart Association class improved (p < 0.001) and the walking distance increased (p < 0.001). During mid-term follow up after surgery for PMR, a deterioration of LV and RV contractile function measures could be observed. However, the clinical status, LV dimensions, and concomitant tricuspid regurgitation improved which in particular imply more effective RV contractile pattern.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969695 | PMC |
http://dx.doi.org/10.1007/s10554-020-02065-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!