A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionf3ab5h2m55dbk4hfu38qr6acfu3lfm5n): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of deep learning in genomics. | LitMetric

Application of deep learning in genomics.

Sci China Life Sci

National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.

Published: December 2020

In recent years, deep learning has been widely used in diverse fields of research, such as speech recognition, image classification, autonomous driving and natural language processing. Deep learning has showcased dramatically improved performance in complex classification and regression problems, where the intricate structure in the high-dimensional data is difficult to discover using conventional machine learning algorithms. In biology, applications of deep learning are gaining increasing popularity in predicting the structure and function of genomic elements, such as promoters, enhancers, or gene expression levels. In this review paper, we described the basic concepts in machine learning and artificial neural network, followed by elaboration on the workflow of using convolutional neural network in genomics. Then we provided a concise introduction of deep learning applications in genomics and synthetic biology at the levels of DNA, RNA and protein. Finally, we discussed the current challenges and future perspectives of deep learning in genomics.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11427-020-1804-5DOI Listing

Publication Analysis

Top Keywords

deep learning
24
learning
8
learning genomics
8
machine learning
8
neural network
8
deep
5
application deep
4
genomics
4
genomics years
4
years deep
4

Similar Publications

Background: Magnetic resonance-guided adaptive radiation therapy (MRgART) systems combine Magnetic resonance imaging (MRI) technology with linear accelerators (LINAC) to enhance the precision and efficacy of cancer treatment. These systems enable real-time adjustments of treatment plans based on the latest patient anatomy, creating an urgent need for accurate and rapid dose calculation algorithms. Traditional CT-based dose calculations and ray-tracing (RT) processes are time-consuming and may not be feasible for the online adaptive workflow required in MRgART.

View Article and Find Full Text PDF

Background: Quantitative susceptibility mapping (QSM) is a post-processing magnetic resonance imaging (MRI) technique that extracts the distribution of tissue susceptibilities and holds significant promise in the study of neurological diseases. However, the ill-conditioned nature of dipole inversion often results in noise and artifacts during QSM reconstruction from the tissue field. Deep learning methods have shown great potential in addressing these issues; however, most existing approaches rely on basic U-net structures, leading to limited performances and reconstruction artifacts sometimes.

View Article and Find Full Text PDF

Background: Recently, deep convolutional neural networks (CNNs) have shown great potential in medical image classification tasks. However, the practical usage of the methods is constrained by two challenges: 1) the challenge of using nonindependent and identically distributed (non-IID) datasets from various medical institutions while ensuring privacy, and 2) the data imbalance problem due to the frequency of different diseases.

Purpose: The objective of this paper is to present a novel approach for addressing these challenges through a decentralized learning method using a prototypical contrastive network to achieve precise medical image classification while mitigating the non-IID problem across different clients.

View Article and Find Full Text PDF

Purpose: Existing prognostic staging systems depend on expensive manual extraction by pathologists, potentially overlooking latent patterns critical for prognosis, or use black-box deep learning models, limiting clinical acceptance. This study introduces a novel deep learning-assisted paradigm that complements existing approaches by generating interpretable, multi-view risk scores to stratify prognostic risk in hepatocellular carcinoma (HCC) patients.

Methods: 510 HCC patients were enrolled in an internal dataset (SYSUCC) as training and validation cohorts to develop the Hybrid Deep Score (HDS).

View Article and Find Full Text PDF

Objective: To provide fully automatic scanner-independent 5-level categorization of the [I]FP-CIT uptake in striatal subregions in dopamine transporter SPECT.

Methods: A total of 3500 [I]FP-CIT SPECT scans from two in house (n = 1740, n = 640) and two external (n = 645, n = 475) datasets were used for this study. A convolutional neural network (CNN) was trained for the categorization of the [I]FP-CIT uptake in unilateral caudate and putamen in both hemispheres according to 5 levels: normal, borderline, moderate reduction, strong reduction, almost missing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!