Motivation: We present flexible Modeling of Alternative PolyAdenylation (flexiMAP), a new beta-regression-based method implemented in R, for discovering differential alternative polyadenylation events in standard RNA-seq data.
Results: We show, using both simulated and real data, that flexiMAP exhibits a good balance between specificity and sensitivity and compares favourably to existing methods, especially at low fold changes. In addition, the tests on simulated data reveal some hitherto unrecognized caveats of existing methods. Importantly, flexiMAP allows modeling of multiple known covariates that often confound the results of RNA-seq data analysis.
Availability And Implementation: The flexiMAP R package is available at: https://github.com/kszkop/flexiMAP. Scripts and data to reproduce the analysis in this paper are available at: https://doi.org/10.5281/zenodo.3689788.
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8208744 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btaa854 | DOI Listing |
Biofactors
January 2025
Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China.
Breast cancer continues to be a major health issue for women worldwide, with vimentin (VIM) identified as a crucial factor in its progression due to its role in cell migration and the epithelial-to-mesenchymal transition (EMT). This study focuses on elucidating VIM's regulatory mechanisms on the miR-615-3p/PICK1 axis. Utilizing the 4T1 breast cancer cell model, we first used RNA-seq and proteomics to investigate the changes in the APA of PICK1 following VIM knockout (KO).
View Article and Find Full Text PDFMicroorganisms
November 2024
Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
Papillary thyroid cancer (PTC) is one of the fastest-growing cancers worldwide, lacking established causal factors or validated early diagnostics. Human endogenous retroviruses (HERVs), comprising 8% of human genomes, have potential as PTC biomarkers due to their comparably high baseline expression in healthy thyroid tissues, indicating homeostatic roles. However, HERV regions are often overlooked in genome-wide association studies because of their highly repetitive nature, low sequence coverage, and decreased sequencing quality.
View Article and Find Full Text PDFInsects
December 2024
Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
Temperature is a pivotal ecological factor in the regulation of insect survival and reproduction [...
View Article and Find Full Text PDFBiology (Basel)
December 2024
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan 430072, China.
Alternative splicing of (DEAD-box helicase 4), a key germline marker gene, has been reported to generate sex-specific transcripts in zebrafish gonads. The biological functions and regulatory mechanisms of the ovary-specific transcript () during oogenesis remain unclear. In this study, we found that mutants, in which was specifically deleted, had enlarged ovaries but laid fewer eggs, along with having a lower fertilization rate compared to WT controls.
View Article and Find Full Text PDFBiology (Basel)
November 2024
Department of Regulation of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia.
This study investigated an alternative mechanism of transcription termination that occurs independently of polyadenylation. We focused on a non-canonical transcription terminator (NTT) identified in the gene of . Using a developed model system, we demonstrated that the minimal functional unit of the NTT consists of 79 nucleotides that form a specific secondary RNA structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!