The magnetic field can affect processes in the non-magnetic systems, including the biochemical reactions in the living cells. This phenomenon becomes possible due to the fermionic nature of an electron and significant energy gain provided by the exchange interactions. Here we report the inhibition effect of the magnetic field on the processes of the chiral supramolecular, i.e., macroscopic self-ordering in the non-magnetic model system. The observed effect is in tune with the reports on the influence of the magnetic field on the adsorption of the chiral molecules, which was explained by the effect of the chirally-induced spin-selectivity and the inhibition of the chemical reactions caused by the singlet-triplet conversion. The magneto sensitivity of the process of the chiral self-ordering directly indicates its spin-polarization nature. Tacking together all of the results in the field, we can propose that the chirality-driven exchange interactions guide the selection of the chiral molecules and explain their prevalence in the living matter. It is also probable that these forces have played a critical role in the origin of life on Earth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555544 | PMC |
http://dx.doi.org/10.1038/s41598-020-74297-1 | DOI Listing |
Eur Radiol
January 2025
Department of Radiology, Montpellier Research Center Institute, PINKCC Laboratory, Montpellier, France.
Objective: To provide up-to-date European Society of Urogenital Radiology (ESUR) guidelines for staging and follow-up of patients with ovarian cancer (OC).
Methods: Twenty-one experts, members of the female pelvis imaging ESUR subcommittee from 19 institutions, replied to 2 rounds of questionnaires regarding imaging techniques and structured reporting used for pre-treatment evaluation of OC patients. The results of the survey were presented to the other authors during the group's annual meeting.
Plants will form the basis of artificial ecosystems in space exploration and the creation of bases on other planets. Astrophysical factors, such as ionizing radiation (IR), magnetic fields (MF) and gravity, can significantly affect the growth and development of plants beyond Earth. However, to date, the ways in which these factors influence plants remain largely unexplored.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC 3800, Australia.
Conventional endoscopy is limited in its ability to examine the small bowel and perform long-term monitoring due to the risk of infection and tissue perforation. Wireless Capsule Endoscopy (WCE) is a painless and non-invasive method of examining the body's internal organs using a small camera that is swallowed like a pill. The existing active locomotion technologies do not have a practical localization system to control the capsule's movement within the body.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
We propose a non-magnetic transparent heating film based on silver nanowires (Ag-NWs) for application in spin-exchange relaxation-free (SERF) magnetic field measurement devices. To achieve ultra-high sensitivity in atomic magnetometers, the atoms within the alkali metal vapor cell must be maintained in a stable and uniform high-temperature environment. Ag-NWs, as a transparent conductive material with exceptional electrical conductivity, are well suited for this application.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Civil Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran.
Forward modeling the magnetic effects of an inferred source is the basis of magnetic anomaly inversion for estimating subsurface magnetization parameters. This study uses numerical least-squares Gauss-Legendre quadrature (GLQ) integration to evaluate the magnetic potential, anomaly, and gradient components of a cylindrical prism element. Relative to previous studies, it quantifies for the first time the magnetic gradient components, enabling their applications in the interpretation of cylindrical bodies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!